Further Differentiation (8/9 pers)

Pd	Lesson, Outline, Approach etc.	Nelson MIA - AH M2	TeeJay Publishers
1	Go over the proofs of the derivatives on $\sin^{-1}x$ and $\cos^{-1}x$. [use $y = \sin^{-1}x \Rightarrow x = \sin y$ etc.] * Ask students to find derivative of $\cos^{-1}x$. * Ask why $\frac{d}{dx}(\sin^{-1}x) = -\frac{d}{dx}(\cos^{-1}x)$ see graphs. Go over Chain Rule $\Rightarrow \frac{d}{dx}(\tan^{-1}\left(\frac{x-1}{x+1}\right))$ etc	Page 32 Ex 2 Qu 1 a, b, e, 2 b, c, d 3a, d Page 33 Ex 3A Qu 2 and 3	Page 3 Ex 1 As many as possible in the period/h'work
2	Go over the idea of Implicit Differentiation and show that $2x^2 - 3xy - y^2 = 1 \implies \frac{dy}{dx} = \frac{4x - 3y}{3x + 2y}$ etc + more examples	Page 36 Ex 4A Qu 1, 2	page 6 Ex 2 Qu 1
3	Go over(i) equation of a tangent to an explicit fn(ii) $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$ or by finding the[A/B]derivative of the original un arranged fn.	Page 36 Ex 4A Qu 5, 9, 4 Page 38 Ex 5 Qu 1 a, d, f, k, ,6	Page 6 Ex 2 Qu 2 - 6
4	Introduce Logarithmic Differentiation via $y = x^{x}, y = 2^{\sin x}, y = (\sin x)^{x}$ etc. Possibly $y = \frac{(3x+5)^{6}(2x-1)^{4}}{(4x+3)^{5}}$?? [A/B]	Page 40, Ex 6 Qu 1, 2, (7)	page 10 Ex 4
5	Explain idea of Parametric Equations of Curves e.g. $x = r\cos\theta, \ y = r\sin\theta, \ \Rightarrow \ x^{2} + y^{2} = r^{2} \ (circle)$ $x = a\cos\theta, \ y = b\sin\theta, \ \Rightarrow \ \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \ (ellipse)$ $x = a\sec\theta, \ y = b\tan\theta, \ \Rightarrow \ \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 \ (hyperbola)$ $x = ct, \ y = \frac{c}{t} \ \Rightarrow xy = c^{2} \ (hyperbola also)$ Explain :- $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ and find equation of tangent to a curve given in parametric form.	Page 42 Ex 7A Qu 1 a - c Page 44 Ex 8A Qu 1 ($rac{dy}{dx}$ only)	page 13 Ex 5
6	Find 2nd derivative => $\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{dy}{dt}\left(\frac{dy}{dx}\right) / \frac{dx}{dt}$ and use this to check the nature of turning points	Page 44 Ex 8A Qu 1 $\left(\frac{d^2y}{dx^2}\right)$ only, 2, 3	Page 15 Ex 6
7	Apply parametric and implicit diffn to related problems e.g. rates of change of volumes, surface areas	Page 53 Ex 2A Qu 1 - 6	page 8 Ex 3
8	Use parametric differentiation to find 1st and 2nd deriv- atives and apply this to motion in a plane. $x = f(t), \ y = g(t) \implies \text{speed} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$ $\text{velocity} = \frac{dx}{dt} \text{ and } \frac{dy}{dt} \text{ in } x \text{ and } y \text{ directions}$	Page 50 Ex 1 Qu 1, 2, 5, 6, 7	Page 17 Ex 7
9	Review		
	Cumulative total = 64 periods		

Further Integration (10/11 periods)

Pd	Lesson, Outline, Approach etc.	Nelson MIA - AH M2	TeeJay Publishers
1	Know $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x$, $\int \frac{1}{1+x^2} dx = \tan^{-1} x$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}$, $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$	Page 61 Ex 1A Qu 1 a, b, e, f 2 a, c, f,h Page 62 Ex 1B Qu 1 a, c, e, h	Page 22 Ex 1
2	Integrate using Partial Fractions (1) e.g. $\int \frac{x+16}{2x^2+x-6} dx$ and $\int \frac{2x^3+7x^2-2x-2}{2x^2+x-6} dx$	Page 64 Ex 2 Qu 5 a, b, d, e 6 a, c	Page 25 Ex 2
3	Integrate using Partial Fractions (2) e.g. $\int \frac{-8x^2 + 14x - 15}{(2x-1)^2(x+2)} dx = \ln(2x-1) + \frac{2}{2x-1} - 3\ln(x+2) + c$	Page 66 Ex 3A Qu 1, 3 a, d, e	Page 25 Ex 3
4	Integrate using Partial Fractions (3) e.g. $\int \frac{x-1}{(x+1)(x^2+1)} dx = -\ln(x+1) + \frac{1}{2}\ln(x^2+2) + c$ and $\int \frac{x^2+2x+1}{x(x^2+1)} dx = \ln x + 2\tan^{-1}x + c$	Page 66 Ex 3A Qu 2, 3 b, c, f 7	Page 27 Ex 4
5	Integration by Parts. Show that $\int \left(u \frac{dv}{dx} \right) dx = uv - \int \left(v \frac{du}{dx} \right) dx$	Page 69 Ex 4 Qu 1, 2	Page 29 Ex 5
6	Integration by Parts twice (or more) [A/B]	Page 71 Ex 5A Qu 1 a - d, g, m, n	Page 29 Ex 6
7	Integration by Parts using a "dummy" function e.g. $\int \ln x dx = \int 1 \ln x dx$, $\int \sin^{-1} x dx = \int 1 \sin^{-1} x dx$		Page 30 Ex 7
	Extension :- Intn by Parts returning to original function e.g. $\int e^x \sin x dx$ etc	Page 71 Ex 5A Qu 1e, f, q, s	Page 31 Ex 8
8	First Order Differential Equations (Variable separable)	Page 77 Ex 8 Qu 1	Page 33 Ex 9
9	Particular solution of a First Order Differential Equation	Page 77 Ex 8 Qu 2, 3, 5	Page 35 Ex 10
10	Solving Real Problems with First Order Differential Equations including "rate of change" e.e. arouth of becteria (x) is given by $\frac{dx}{dx} = \frac{kx(n-x)}{dx}$	Page 81 Ex 9A Qu 2 and 4 -9	Page 38 - 39 Ex 11
	(chemical reactions, Newton's Laws of cooling etc)		
11	Review		
	Cumulative total = 75 periods		

Complex Numbers (9/10 pers)

Pd	Lesson, Outline, Approach etc.	Nelson MIA - AH M2	TeeJay Publishers
1/2	Introduce Imaginary number $i = J(-1)$ and Complex Number $z = a + ib$ Show that $i^2 = -1$, $i^3 = -i$, $i^4 = 1$ etc. Show how to add, subtract, multiply and introduce the complex conjugate $\overline{z} = a - ib$ to divide Show also how to find simple powers $(2 + i)^4$ (binomial).	Page 90 Ex 1 Qu 1, 2, 3, 6, 7, 8 Page 91 Ex 2 Qu 1 a, b, c, 2 c, e 3 a, b, f 5 a, b	Pages 49 - 50 Ex 2 Ex 1 (some) if needed
3/4	Show how to represent a complex number pn an Argand Diagram (treat addition etc as "vector" addition etc) Define modulus and argument and show how to find r and θ . Show $z_1 \times z_2 = r(\cos \theta + i \sin \theta) \times s(\cos \phi + i \sin \phi)$ $= rs(\cos(\theta + \phi) + i \sin(\theta + \phi))$ Same for division	Page 94 Ex Qu 3 a, b, d, e, i Qu 6 a, b, f 7 a, b, c Page 98 Ex 5 Qu 1 a, b, f, g	Page 53 - 54 Ex 3 Page 55 Ex 4
5	Show De Moivre's Theorem $z^n = r^n(\cos n\theta + i \sin n\theta)$ (Introduce $z = r \operatorname{cis} \theta$ and/or $z = r e^{i\theta}$ as shortened form)	page 101 Ex 6 Qu 1, 2, 3a, 4 g, h, i, j	Page 57 - 58 Ex 5
6	Introduce Fundamental Theorem of Algebra to find <u>all</u> the roots (factors) of a polynomial equation (function)	Page 108/109 Ex 8 Qu 2a, d 3 a, b, 4, 5, 6a, b	Page 61 Ex 6
7	Show the Geometric Interpretation of equations and inequalities in the Complex Plane	Page 96 Ex 4 Qu 1 a, b, d, f, j 3 a, b, 4 a, c	Page 63 Ex 7
8	Apply De Moivre's Theorem to solve Multiple Trig formulae e.g. Express $\sin 5\theta$ in terms of $\sin \theta$ only	Page 102 Ex 6 Qu 5, 6, 7	Own Examples
9	use De Moivre's Theorem to find the Roots of Unity (extension :- find roots of other complex numbers)	Page 106 Ex 7 Qu 2 + selection from 1	own Examples
10	Review		
	Cumulative total = 85 periods		

Sequences and Series (7/8 pers)

Pd	Lesson, Outline, Approach etc.	Nelson MIA - AH M2	TeeJay Publishers
1	Revise Fifth Year definitions of Sequences and Series Define finite and infinite sequences & series	Page 117 Ex 2A Qu 1 a, c, d, 2 a-e, 3, 4, 6	Page 72 Ex 1 Qu 1 - 3
	Define notation $u_n = n^2$		
	Introduce idea of Arithmetic Sequence $u_{n+1} = u_n + d$		
	Build up to $u_n = a + (n-1)d$ - general term of A.S.		
2	Show how to find sum of <i>n</i> terms of an Arithmetic Series => $S_n = \frac{n}{2} (2a + (n-1)d)$	Page 120 Ex 3A Qu 1, 3, 4, 5, 8	Page 72 Ex 1 Qu 4 - 9
	Show two types e.g. find $S_{15} = 2 + 5 + 8 + \dots$ and $S = 7 + 11 + 15 + \dots + 75$ Show how to use simultaneous equations in :- $u_2 = 9$, $u_5 = 27$, find <i>a</i> , <i>d</i> , and S_{10}		
3	Introduce the Geometric Sequence :- $u_{n+1} = ru_n$ Build up to $u_n = ar^{n-1}$ - the general term of a G.S. Find $u_{10} = 180 + 90 + 45 + 22 \cdot 5 + \dots$	Page 123 Ex 4A Qu 1 a - e, 2, 3, 5, 7	Page 75 Ex 2A Qu 1 - 4
4	Show how to find sum of <i>n</i> terms of a Geometric Series Build up to $S_n = \frac{a(r^n - 1)}{r - 1}$ (or $\frac{a(1 - r^n)}{1 - r}$) Find $S_{19} = 3 - 6 + 12 - 24 + \dots$ Use sim equ ⁿ s to solve $u_3 = 32$, $u_6 = 4 \Rightarrow$ find S_8	Page 127 Ex 5A Qu 1, 2, 3, 4	Page 75 Ex 2A Qu 5 - 7
5	Go over \mathcal{S}_∞ of a G.S. and define its existence (Graphics Calculators are useful here)	Page 131 Ex 6A Qu 1 - 4 and 7	Page 77 Ex 2B
6	Expand $\frac{1}{1-r}$ as a G.S. with common ratio r , first term 1. as $\frac{1}{1-r} = 1 + r + r^2 + r^3 + r^4 + \dots$ show alternative using binomial on $(1 - r)^{-1}$ or by dividing $=> (1 - r)$ 1 etc. Expand $\frac{1}{a+b}$ as $\frac{1}{a} \left(\frac{1}{1+\frac{b}{a}}\right)$ etc. $[A/B]$	Page 134 Ex 7A Qu 2, 4 Page 135 Ex 7B Qu 2, 5	Page 79 Ex 3
7	Show that $\lim_{n \to \infty} (1 + n) = e$ (calculator)	Page 137 Ex 8 Qu 1 a - d, 2 a, b, 4	Page 81 Ex 4 page 82 Ex 5
	$\sum_{k=1}^{k=n} k = 1 + 2 + 3 + + n = \frac{n(n+1)}{2}$ (use A.S.) and show how to find $\sum (k+2)$, $\sum (4k-1)$ etc.		
8	Review		
	Cumulative total = 93 periods		

Elementary Number Theory & Proofs (10/11 periods)

Pd	Lesson, Outline, Approach etc.	Nelson MIA - AH M2	TeeJay Publishers
1	Go over idea of "statement", true/false, "implications (=>, <=, <=>) and "equivalence" if <i>a</i> => <i>b</i> and <i>b</i> => <i>a</i> . Converse Statements. Direct Proof and "Disproof by Counter example"	Page 3 Ex 1A A selection	Page 85-86 Ex 1, 2 & 3
2	Proof by "Contradiction". e.g. "set of primes is infinite" "√2 is irrational" etc.	Page 14 Ex 3A Qu 1, 2, 3, 6, 11, 12	Page 88 Ex 4
3/4	"Simple" proof by "Induction" (At this stage, dependent on time, you may wish to do <u>ALL</u> the proofs by induction by combining the work of this Unit with that of the Induction Chapter in Maths 3 e.g. (a) Prove that $8 3^{2n} - 1 \forall n \in W$ (b) Prove that $\sum_{r=1}^{k=n} r^2 = \frac{1}{6}n(n+1)(2n+1)$ Prove Binomial and De Moivre's Theorem by Induction	Page 20 Ex 4 Qu 6, 7, 8, 9, 11, 12, 13	Page 89 Ex 5 + whole sheet of \sum questions
5	Review		
	For Session 2001-2002 End of Mathematics 2 Total = 43 periods for Mathematics 2 Cumulative Total for M1 & M2 = 98 periods Assuming Maths 2 started around 1st Nov, this unit should end around Friday 18th Jan. =>3 periods revision (including specimen NAB3) + 1 period for test = 47 periods <u>Cumulative total for M1 & M2 = 102 periods</u> TEST around Thurs 24th January PRELIMS start Wed 20th Feb for 2 weeks- Suggest doing at least two weeks work on Maths 3 before beginning revision for Prelims (possibly Matrices could be done or Vectors if a little more time is available)	Actual Test Date	