Vectors (9/10 pers)
Mathematics 3 Outcome 1

Pd	Lesson, Outline, Approachetc.	$\mathfrak{N e l s o n ~} \mathfrak{M I} \mathcal{A}$ - $\mathcal{A H} \mathfrak{M 3}$	Teegay Publishers
1/2	Revise position vector, $P Q=\underline{q}-\underline{p}$, communicative, associative, zero vector, multiplication by a scalar k, components, magnitude, unit vector, (i, j, and \underline{k}) as well as direction vectors and direction cosines. Revise "section formula" (not compulsory in S5) Revise "scalar product" and its usage in calculating angles $\Rightarrow \quad \cos \theta=\frac{\underline{a} \cdot \underline{b}}{\|\underline{a}\|\|\underline{b}\|}$ Go over the fact that scalar product is distributive $\Rightarrow \quad \underline{a} \cdot(\underline{b}+\underline{c})=\underline{a} \cdot \underline{b}+\underline{a} \cdot \underline{c}$ and the fact that if $\underline{a} \cdot \underline{b}=0 \Rightarrow \underline{a}$ is perpendicular to \underline{b} Go over example of finding a unit vector \underline{u} which is at 45° to vector \underline{a} and is 60° to vector \underline{b}.	Page 44 Ex 1 Qu 6-8 Page 46 Ex 2 Qu 1, 2, 9	Page 4 Ex 1
3	Introduce the Right Handed Vector system (and L.H.) Define $\underline{a} \times \underline{b}$ as a new vector \underline{c}, i.e. $\underline{a} \times \underline{b}=\underline{c}$ where $\|\underline{a} \times \underline{b}\|=\|\underline{a}\|\|\underline{b}\| \sin \theta$ = (area of parallelogram) and where $[\underline{a}, \underline{b},(\underline{a} \times \underline{b})]$ forms a right handed system Show how to calculate $\underline{a} \times \underline{b}$ using :- $\begin{gathered} \underline{a} \times \underline{b}=\left\|\begin{array}{ccc} \underline{i} & j & \underline{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \end{array}\right\| \\ \Rightarrow \quad \underline{a} \times \underline{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) \underline{i}-\left(a_{1} b_{3}-b_{1} a_{3}\right) \underline{j}+\left(a_{1} b_{2}-b_{1} a_{2}\right) \underline{k} \end{gathered}$ Do a few examples	```Page 52 Ex } Qu 1, 2a,b,5, 8, 9a,b, 12```	3-4 examples on finding $\underline{a} \times \underline{b}$
4	Show that $(\underline{a} \times \underline{b})=-(\underline{b} \times \underline{a})$ Show that $\underline{a} \times(\underline{b} \times \underline{c})=(\underline{a} . \underline{c}) \underline{b}-(\underline{a} . \underline{b}) \underline{c}$ (vect. triple product) Calculate the area of triangle $A B C$ where $A(1,3,-2), B(4,3,0)$ and $C(2,1,1)$ using vector product (and area $=\|A B \times A C\|$) be able to find a unit vector perpendicular to vectors $\underline{a} \& \underline{b}$	$\begin{aligned} & \text { Page } 52 \text { Ex } 4 \\ & \text { Qu } 3,4,6,7,14, a, b \end{aligned}$	Page 9 Ex 2
5	Equation(s) of a line in 3 dimensions:- (i) Vector form $\underline{r}=\underline{a}+t \underline{d}$ (ii) Parametric form $y=b+t m$ $z=c+t n$ (iii) Symmetric form $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}=t$	$\begin{array}{r} \text { Page } 66 \text { E× 9A } \\ \text { Qu 1, } a, b, 2, a \\ 3, a, c, e, 5 \end{array}$	Page 12 Ex 3
	cont'd		

Mathematics 3 Outcome 1
Vectors (9/10 pers) (cont'd....)

$P d$	Lesson, Outline, Approachetc.	$\mathcal{N e}$ con $\mathcal{M I} \mathcal{A}$ - $\mathcal{A H} \mathcal{M 3}$	Teegay Publishers
5	... cont'd Point out that to find the equation(s) of a line, you require two things: a point on the line and the direction of the line. Example:- Find line joining $A(1,0,2)$ to $B(2,1,0)$ Show that equation of a line is not unique in how it appears.	$\begin{aligned} & \text { Page } 67 \text { Ex 9B } \\ & \text { Qu } 2 \end{aligned}$	
6	Equation of a plane (T) Discuss the NORMAL (\underline{n}) to a plane If A is a known point on the plane (T), \underline{n} the normal and X is any other point on the plane, then :- $\begin{array}{ll} & \underline{n} \cdot \underline{x}=\underline{n} \cdot \underline{a} \\ \Rightarrow & l x+m y+n z=l a+m b+n c \\ \text { or } & l x+m y+n z=k \quad(\text { Cartesian form }) \end{array}$ Show also parametric form $\underline{r}=\underline{a}+\lambda \underline{u}+\mu \underline{v}$ Establish that to find the equation of a plane you require two facts: a point A on the plane and the normal (\underline{n}) to it.	$\begin{array}{r} \text { Page } 57 \text { Ex } 6 \\ \text { Qu 1, }, ~ b, ~ 2, a, 3 \\ 4, a, c, 5, a, 9,10 \end{array}$	Page 15/16 Ex 4
7/8	(i) Angles between two lines $=$ angle between the two direction ratios => use the scalar product (ii) Angle between two planes $[A / B]=$ angle between the two normals. $\Rightarrow \quad \text { use } \underline{n}_{1} \cdot \underline{n}_{2} \quad \text { (etc.) }$ (iii) Angle (θ) between a line (L) and a plane (Π) $\Rightarrow \theta=(90-\phi)$ where ϕ is the angle between the line L and the normal \underline{n} to the plane $\Rightarrow \quad$ simply find ϕ from $\underline{l} . \underline{n}$	Page 70 Ex 11 Qu 1, 2 Page 59 Ex 7A Qu 1, 2, 3 Page 68 Ex 10 Qu 1 (ii) a, b, c Qu $2 a, b, 3,4, a$	page 22 Ex 5 Qu 1 Page 22 Ex 5 Qu 2 Page 22 Ex 5 Qu 3
9/10	cont'd		

$P d$	Lesson, Outline, Approach etc.		Teegay Publisher
9/10	(i) Intersection of two lines Study the set of 3 simultaneous equations, solve any two and check the solution in the third. (ii) Line of intersection of two planes (a) use $\underline{n}_{1} \times \underline{n}_{2}$ to get direction of the line of intersection (b) set x (or y or z) = any val;ue and use this to find the values of the other two variables, giving the coordinates of a point on the line. etc. (iii) Intersection of three planes $\left.\begin{array}{l}\text { (a) single point } \\ \text { (b) meet on a line } \\ \text { (c) don't meet at all }\end{array}\right\}$ (use Gaussian elimination) (iv) Intersection of a line and a plane $\begin{equation*} x=a+t l, y=b+t m, z=c+t n \tag{1} \end{equation*}$ and $\begin{equation*} p x+q y+r z=k \tag{2} \end{equation*}$ $\Rightarrow \quad$ substitute equations (1) into (2) and solve	Page 70 Ex 11 Qu 1, 2 Page 72 Ex 12 Qu 1, 2 Page 78 Ex 15 Qu 1, a, c, 2, a, c Page 68 Ex 10 Qu 1 (i) d, e,f Qu 2, c, 4, b, c	Page 22 Ex 5 Qu 4 Page 22 Ex 5 Qu 5. a / b Page 22 Ex 5 Qu 5.c Page 22 Ex 5 Qu 6-12
	$\text { Cumulative total }=112 \text { periods } \quad(+ \text { two we eks }$	for prelims $\cong 122$)	

Mathematics 3 Outcome 3
Further Sequences and Series (4 periods)

$\mathcal{P d}$	Lesson, Outline, Approach etc.	$\mathfrak{N e}$ cson $\mathcal{M I} \mathcal{A}$ - $\mathcal{A H} \mathfrak{M} 3$	Teegay Publisfers
1	Define a "Power Series" and the Maclaurin series:- $f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots \ldots$ Show that $\quad e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\quad \forall x$ $\begin{aligned} & \ln (1+x)=x-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots-1<x<1 \\ & \sin x=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \quad \forall x \\ & \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \quad \forall x \\ & \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots-1<x<1 \\ & (1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots . \end{aligned}$	```Page 91 Ex } Qu 1a,f Page 95 Ex } Qu 1a,f, 2,a,d Qu 3a, 5a, 6a(i)```	Page 53 Ex 1
2	Combine expansions e.g. Show how to expand $e^{-2 x} \sin 3 x, \ln (\cos x)$, etc	$\begin{gathered} \text { Page } 96 \text { Ex } 6 \\ \text { Qu } 7,8 \end{gathered}$	Page 54 Ex 2
3/4	Iteration:- Remind of simple Iteration techniques learned in S4/5 Show how to rearrange the function, $x^{2}-4 x-8=0$ to $\begin{array}{lll} x=\frac{1}{4} x^{2}-2 \Rightarrow x_{n}=\frac{1}{4} x_{n-1}^{2}-2, & \left(g(x)=\frac{1}{4} x^{2}-2\right) \\ x=\frac{8}{x-4} \quad \Rightarrow \quad x_{n}=\frac{8}{x_{n-1}-4}, & \left(g(x)=\frac{8}{x-4}\right) \\ x=2(x+2)^{\frac{1}{2}} \Rightarrow x_{n}=2\left(x_{n-1}+2\right)^{\frac{1}{2}}, & \left(g(x)=2(x+2)^{\frac{1}{2}}\right) \end{array}$ and use a calculator (computer) to find solutions to the above recurrence relations. Go over idea of "staircase" and "cobweb" diagrams and the test for convergence (if a root at α, then will converge to iff $\left.\left\|g^{\prime}(\alpha)\right\|<1\right)$ Go over 2-3 examples of testing for convergence and homing in on solutions.	Page 99 ex 8 page 102 Ex 9 Qu 1, 2, 4 (hard)	Page 61 Ex 3
	Cumulative total $=124$ periods (+ two weeks for	$r \operatorname{prelims} \cong 134)$	

Further \mathcal{N} Nmber Theory \& Proofs (4 periods)
Matfematics 3 Outcome 5

Pd	Lesson, Outline, Approachetc.	$\mathfrak{N e}$ lson $\mathcal{M I} \mathcal{A}$ - $\mathcal{A H} \mathfrak{M 3}$	Teegay Publishers
1	Much may already have been covered in Maths 2. Revise method of Direct proof, by Contradiction (Contrapositive as well ??)	A mixture from Ex 1, $2 A$ and $2 B$	Page 82 Ex 4
$2 / 3$	Expand Induction Prove that $\sum_{r=1}^{r=n} r^{3}=\frac{n^{2}(n+1)^{2}}{4}=\left(\sum_{r=1}^{r=n} r\right)^{2}$	Page 141 Ex 3 A As much as possible	Page 85 Ex 5 (+ further examples)
4	Go over Division Algorithm. Introduce the Euclidian Algorithm Show that if the g.c.d $(a, b)=d$ the $d=x a+y b$ for unique integers x and y. [A/B] (Possibly some "base" work if time)	$\begin{aligned} & \text { Page } 145 \text { Ex } 4 \\ & \text { Qu } 1 \text { a, c,e, g, i } \\ & \text { Page } 147 \text { Ex } 5 \\ & \text { Qu } 1-4 \\ & \text { (page } 151 \text { Ex } 7 \text { - some) } \end{aligned}$	page 87 Ex 7 Page 88 Ex 8 (page 89 Ex 9)
5	Review		
	For Session 2001-2002 End of Mathematics 3 Total $=32$ periods for Mathematics 3 Cumulative Total for $\mathcal{M} 1, \mathcal{M} 2$ \& $\mathcal{M 3}=134 \mathrm{p}$'s Assuming $\mathcal{M a t h s} 3$ started around $\operatorname{Mar} 4 t h$, and 8 period done before prelims, this unit should end about Thursday 11 th April $=>3$ periods revision (including specimen $\mathcal{N}(\mathcal{A B} 3$) +1 period for test $=36$ periods $\mathcal{T E S} \mathcal{T}$ around Wed 17 th April $\mathcal{F I N} \mathcal{A L}$ Exam in May Teegay Revision Booklet (fianded out Earlier) along with $\mathcal{T e}$ egay Specimen papers and Last year's paper to be used in run-up to Exam	Actual Test Date	$=$

