<u>Unit 1</u>

- 1.1 Binomial Expansions
- 1.2 Partial Fractions
- 2 Differentiation
- 3 Integration
- 4 Functions & Curve Sketching
- 5 Gaussian Elimination

<u>Unit 2</u>

- 1 Further Differentiation
- 2 Sequence & Series
- 3 Further Integration
- 4 Complex Numbers
- 5 Proof Theory

<u>Unit 3</u>

- 1 Vectors, Lines & Planes
- 2 Matrices & Transformations
- 3 Further Sequence & Series and MacLaurins
- 4 1st & 2nd Ordinary Differential Equations
- 5 Euclidean Algorithm & Further Proof Theory

NB: Order of teaching shall vary, but this is in line with the order of the textbook

1.1 Binomial Expansions

$$\binom{n}{r} = \binom{n!}{r!(n-r)!} = \binom{n}{n-r}$$

 where
 $n! = n \ge (n-1) \ge (n-2) \ge \dots \ge 3 \ge 2 \ge 1$
 $n! = n \ge (n-1)!$
 121

 and
 $(n-1)! = (n-1) \ge (n-2) \ge \dots \ge 3 \ge 2 \ge 1$

 Given
 $n! = n \ge (n-1)!$

Use property with r(r-1)! = r! & (n-r+1)(n-r) = (n-r+1)!to prove

$$\binom{n}{r-1} + \binom{n}{r} = \binom{n+1}{r}$$

Binomial Expansion

$$\left[(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{r} x^{n-r} y^r + \dots + \binom{n}{n} y^n \right]$$
Example Find the coefficient Independent of x in the expansion of $\left(2x + \frac{1}{x} \right)^4$
Independent of x
NO x term
 \neq Coeff when x^0

$$\left(2x + \frac{1}{x}\right)^{4} = \sum_{r=0}^{4} {\binom{4}{r}} (2x)^{4-r} \left(\frac{1}{x}\right)^{r}$$

$$= \sum_{r=0}^{4} {\binom{4}{r}} (2)^{4-r} (x)^{4-r} (x^{-1})^{r} = {\binom{4}{r}} (2)^{4-r} (x)^{4-r} (x^{-r})$$

$$= {\binom{4}{r}} (2)^{4-r} (x)^{4-r-r}$$

$$= {\binom{4}{r}} (2)^{4-r} (x)^{4-2r}$$

$$Independent when (4-2r) = 0$$

$$2r = 4$$

$$\Rightarrow r = 2$$

Thus coefficient when r = 2 is, C = $\binom{4}{2} (2)^{4-2} (x)^{4-4}$ = $\frac{4!}{2!(4-2)!} x (2)^{2}$ $= \frac{4 \times 3 \times 2!}{2! \times 2!} \times 4 = \frac{12}{2} \times 4 = 6 \times 4 = 24$

M Newlands, 2014

<u>1.2 Partial Fractions:</u> (7 Types to consider)

<u>1 – Quadratic</u>

$$\frac{4x+1}{(x+1)(x+2)} = \frac{A}{(x+1)} + \frac{B}{(x+2)}$$

<u>2 – Quadratic with repeated factors</u>

$$\frac{2x-1}{(x-3)^2} = \frac{A}{(x-3)} + \frac{B}{(x-3)^2}$$

<u>3 – Cubic</u>

$$\frac{x^2 - 7}{(x - 1)(x + 2)(x - 4)} = \frac{A}{(x - 1)} + \frac{B}{(x + 2)} + \frac{C}{(x - 4)}$$

<u>4 – Cubic with 2 repeated factors</u>

$$\frac{5x+2}{(x+3)(x-2)^2} = \frac{A}{(x+3)} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}$$

$$\frac{x^2 - 7x + 4}{(x - 1)^3} = \frac{A}{(x - 1)} + \frac{B}{(x - 1)^2} + \frac{C}{(x - 1)^3}$$

<u>6 – Quadratic which can't be factorised</u>

$$\frac{3x^2 + 2x + 1}{(x+1)(x^2 + 2x + 2)} = \frac{A}{(x+1)} + \frac{Bx + C}{(x^2 + 2x + 2)}$$

7 – Higher polynomial on numerator - Need to DIVIDE first

$$\frac{x^{3}+2}{x(x-3)} = \frac{x^{3}+2}{x^{2}-3x} = x+3+\frac{9x+2}{x(x-3)} = x+3+\frac{A}{x}+\frac{B}{(x-3)}$$

Need to use long division before using partial fractions when higher degree of polynomial on numerator. Then solve Partial Fractions as normal.

2 Different	<u>tiation</u>				
f(x)	f'(x)	Other Formulae			
ax^n	nax^{n-1}	$1 + tan^2x = sec^2x$			
sinax	acosax				
cosax	-asinax	$\sin^2 x + \cos^2 x = 1$			
tanx	sec^2x	$\sin^2 x = 1 - \cos^2 x$			
$cosecx = \left(\frac{1}{\sin x}\right)$	-cosecxcotx	$sinx = \sqrt{(1-\cos^2 x)}$			
$secx = \left(\frac{1}{\cos x}\right)$		$\cos^2 x = 1 \sin^2 x$			
$cotx = \left(\frac{1}{\tan x}\right)$	$-cosec^2x$	$cosx = \sqrt{(1-sin^2x)}$			
ln /x /	$\frac{1}{x}$	sin2x = 2sinxcosx			
e^{ax}	$a e^{ax}$	$cos2x = cos^2x - sin^2x$			
		$= 2\cos^2 x - 1$			
Quotient Rule:		$= 1 - 2 \sin^2 x$			
	, ,				
$\frac{f(x)}{g(x)}$ or $\frac{u}{v}$	$\frac{u'v - uv}{v^2}$	If $cos2x = 1 - 2sin^2x$			
		$2sin^2x = 1 - cos2x$			
Product Rule:		$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$			
Trounce Ruic.		$\sin x = \frac{1}{2}(1-\cos 2x)$			
f(x)g(x) or uv	u'v + uv'	$If \cos 2x = 2\cos^2 x - 1$			
<i>J(11)B(11) et 11</i>		$2\cos^2 x = 1 + \cos^2 x$			
Chain Dula		$\cos^2 x = \frac{1}{2} (1 + \cos 2x)$			
<u>Chain Rule:</u>		$cos^{2}x = \frac{1}{2}(1+\cos 2x)$			
$(\ldots, 1)^n$	$n(ax+b)^{n-1}.a$	$\cos(A\pm B) = \cos A \cos B \mp \sin A \sin B$			
$(ax+b)^n$	$=an(ax+b)^{n-1}$	$\sin(A\pm B) = \sin A \cos B \pm \cos A \sin B$			
Parametric: d	v = dv/dt & d	$^{2}\mathbf{v} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$			
	$\frac{Parametric:}{dx} \frac{dy}{dx} = \frac{dy/dt}{dx/dt} & \frac{d^2y}{dx^2} = \frac{d}{dx} \frac{d^2y}{dt} $				
Inverse:		······································			
$\frac{d}{dx}\left(\tan^{-1}\left(\frac{x}{a}\right)\right) = \frac{a}{a^2 + x^2} \qquad \frac{d}{dx}\left(\sin^{-1}\left(\frac{x}{a}\right)\right) = \frac{1}{\sqrt{a^2 - x^2}} \qquad \frac{d}{dx}\left(\cos^{-1}\left(\frac{x}{a}\right)\right) = \frac{-1}{\sqrt{a^2 - x^2}}$					
Differentiating: L	Distance s(t) → Veloc	city, $v(t) \Rightarrow$ Acceleration, $a(t)$			
vv 0	s(t) →	$\frac{ds}{dt} \Rightarrow s''(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}$			

<u>3 Integration Rules</u> $\int F'(x)dx = f(x) + c \qquad \int^{b} f(x)dx = F(b) - F(a)$ $\int [af(x) + bg(x)]dx = a \int f(x)dx + b \int g(x)dx$ $\int_{a}^{b} f(x)dx = -\int_{a}^{a} f(x)dx$ $\frac{d}{\int \cos(ax+b)dx} = \frac{1}{a}\sin(ax+b) + c \qquad \int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + c$ $\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + c \qquad \int -\csc^2 x dx = \cot x + c$ $\int -\cos ecx \cot x dx = \cos ecx + c$ $\int \sec x \tan x dx = \sec x + c$ $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$ $\int \frac{1}{ax+b} dx = \frac{1}{a} \ln(ax+b) + c$ $\int e^{ax} dx = \frac{e^{ax}}{a} + c$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c$ $\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c$

Main Methods of Integration

- 1. Volume of Revolution [if on x-axis use dx, if on y use dy]
- 2. Higher power on numerator *→* Division & Partial Fractions
- 3. Substitution [**Remember to amend integral values and dx]
- 4. Integration by Parts $\int uv' = \{uv \int u'v\}$ [diff easier function]
- 5. Separation of Variables. Often involves $\ln \&$ remember + C then take exponential of both sides to solve [Let $A = e^{c}$]
- 6. Inverse Trig function [May appear within partial fractions]
- 7. Combination of all of the above

Ex 2: The container with function $y = x^2 + 2$ is rotated around the y-axis between y = 3 and y = 6 (Diagram on LHS). If $y = x^2 + 2$ then $x^2 = (y - 2)$ [As around y-axis => use dy and formula with x^2]

$$V = \int \pi x^2 dy$$

= $\int_{3}^{6} \pi (y-2) dy = \pi \left[\frac{y^2}{2} - 2y \right]_{3}^{6} = \pi \left\{ \left[\frac{36}{2} - 12 \right] - \left[\frac{9}{2} - 6 \right] \right\} = \pi \left[\frac{27}{2} - 6 \right] = \frac{15\pi}{2}$ Units³

Using various methods of Integration:-

2. <u>SAME POWER (OR HIGHER) on NUMERATOR → DIVIDE:</u>

$$\frac{\int \frac{x+1}{x+3} dx = \int \left(\frac{(x+1)+2-2}{x+3}\right) dx = \int \left(\frac{x+3}{x+3} - \frac{2}{x+3}\right) dx = \int \left(1 - \frac{2}{x+3}\right) dx = x - 2\ln|x+3| + c$$

$$\int \left(\frac{x^3 + 2x^2 + x - 1}{x+1}\right) dx \qquad x+1 \sqrt{x^3 + 2x^2 + x - 1}$$

$$= \int x^2 + x + \frac{-1}{(x+1)} dx \qquad \underline{x^3 + x^2} = \frac{x^3}{3} + \frac{x^2}{2} - \ln|x+1| + c \qquad \underline{x^2 + x - 1}$$

$$= \frac{x^3}{3} + \frac{x^2}{2} - \ln|x+1| + c \qquad \underline{x^2 + x - 1}$$

Remember a higher polynomial on the numerator => Long Division

2B. Partial Fractions:

$$\int \frac{2x-1}{(x+1)(x+4)} dx = \int \left(\frac{A}{(x+1)} + \frac{B}{(x+4)}\right) dx = \dots etc.$$

3. Substitution

Given a polynomial **1** degree higher on numerator, <u>check if denominator can</u> <u>differentiate</u> and cancel out the numerator via substitution

$$\int \frac{2x+2}{x^2+2x} dx = \int \frac{2x+2}{u} \frac{du}{2x+2} = \int \frac{du}{u} = \ln|u| + c = \ln|x^2+2x| + c$$

4. Integration by parts

Use if given 2 functions combined $\Rightarrow \int uv' = \{uv - \int u'v\}$

Functions that repeat or alternate [*E.g. e^x*, *cos x, sin x*] → *set integral to* **I** & *use 'loop'/repetition to rearrange* & *solve integral.*

If integrating complex functions [i.e. $\int \tan x \, dx$, $\int \ln |x| \, dx \, etc.$] \Rightarrow Set up as integration by parts and multiply the function given by 1.

1.
$$tan x dx \& \int 1. \ln |x| dx$$

5. Separation of Variables

$\frac{dy}{dx} = \left(x+2\right)^3 y$	As we have a combination of x and y
$\frac{dy}{y} = \left(x+2\right)^3 dx$	variables we must separate them.
$\int \frac{dy}{y} = \int \left(x+2\right)^3 dx$	Then integrate both sides.
$\ln y = \frac{(x+2)^4}{4} + c$	Only attach constant to RHS.
$y = e^{\left(\frac{\left(x+2\right)^4}{4}+c\right)}$	Then take exponential of each side to obtain y.
$y = e^{\frac{(x+2)^4}{4}} \cdot e^c$	Finally separate using indice rules
$y = Ae^{\frac{(x+2)^4}{4}},$	Where $A = e^c$

6. Inverse Trigonometric Functions

***Remember tan is ONLY inverse function bringing fraction to FRONT** Usually quite obvious when to use, as **tan, cos and sine inverse** functions as they have squares/square roots involved.

REMEMBER TO CHANGE INTEGRAL VALUES

$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c$
--	--	---

**In Trig Substitution highly likely that the denominator shall become

$$\sqrt{(1-\cos^2 x)} = \sin x$$
, $\sqrt{(1-\sin^2 x)} = \cos x$ or $\sqrt{(1+\tan^2 x)} = \sec x$

DON'T FORGET TO RE-ARRANGE & REPLACE notation from say, dx, to du or dθ & change DEFINITE INTEGRAL values accordingly so ENTIRE problem is in terms of new variable.

4 Functions and Curve Sketching

<u>ONE-TO-ONE</u> If each value in domain (input) images onto only **1 value** in range

<u>**INVERSE and ONTO**</u> An **INVERSE** exists if the values in the range fall exactly onto one value in domain, (if co-domain is exactly same as the range \rightarrow **ONTO**)

If more than one value in the domain gives the same value in range [i.e. $(\pm 2)^2 = 4$] $\rightarrow MANY-TO-ONE.$ {An inverse may exist if the domain is restricted say to x > 0}

Curve Sketching (ASSMTEAS)

Axes	<u>Find where it cuts the axes</u>	x = 0 (y-axis)
		y = 0 (x - axis)

Symmetry Consider Status of Function

Odd function is rotated 180° around origin	f(-x) = -f(x)
Even function is reflected on y-axis	f(-x) = f(x)
If Neither exist cannot assume anything!	$f(-x) \neq f(x)$

Stationary Points or Points of Inflexion, f'(x)=0

<u>Max/Min</u> Remember to find y-coordinate from ORIGINAL function. <u>Turning Pts Use nature table or f</u> "(x) rules to find NATURE of TPts

If f''(a) > 0 It is happy \bigcup with a min turning point or If ''(a) < 0 It is unhappy \bigcap with a max turning point If f''(x) = 0 then need to use the nature table

x	$\rightarrow a \rightarrow$
dy	
$\frac{dx}{dx}$	
Slope	

<u>Extremes of</u>

<u>A</u>symptotes [Think of when undefined and also when $x \rightarrow \pm \infty$] <u>Vertical Asymptote</u> at $x \rightarrow \pm ??$, then $y \rightarrow \pm \infty$ (Values which make the denominator undefined)

<u>Non-Horizontal/Non-Vertical/Slant/Oblique</u> at $y = ? x \rightarrow \pm \infty$

- Exists when higher power on numerator \rightarrow find via DIVIDING
- Slant Asymptote is the first section (Quotient) [i.e. line y = ax + b] Then use the remainder to determine whether \pm for $x \rightarrow \pm \infty$

<u>Sketch</u> Annotate asymptotes, turning points, and where cuts x & y-axes *** remember by using long division at the start shall make the function far more manageable to differentiate and to determine Non-Vertical Asymptotes

<u>5 Gaussian Elimination – 3 Possible Solutions to Consider:</u>

Work around in an 'L' shape (from $a_{21} \rightarrow a_{31}$ then to a_{32}) rearranging the system of equations into Upper Triangular form :

 $Ox + Oy + kz = N \Rightarrow ONLY ONE UNIQUE SOLUTION EXIST$

and can therefore solve for x, y and z.

Type 2	1	2	3	4 7 9
	0	5	6	7
		0	0	9)

 $Ox + Oy + Oz = k \Rightarrow$ The system of equations does not make sense and is said to be <u>INCONSISTENT \Rightarrow HAS NO SOLUTIONS</u>

<i>Type 3</i>	(1	2	3	4
	0	5	6	7
	0	0	0	4 7 0

 $0x + 0y + 0z = 0 \Rightarrow \underline{REDUNDANT}$ (this means parallel planes exist as one has eliminated the other) $REDUNDANCY \Rightarrow \underline{INFINITE SOLUTIONS EXIST}$

ILL-CONDITIONING

A SMALL change in the matrix makes a massive difference in the final solution is called ill-conditioning.

This has rarely came up (2012 only), so potentially a favourite.... Other favourite is using the matrix to find an unknown value?

<u>Differentiating Exponential Problems</u>: (x^2+2) **Example** Differentiate the following y = 4

 $ln/y = ln/4^{(x^2+2)}/$ 1. Take **In** of each side $ln/y = (x^2 + 2)ln/4/$ 2. *Rearrange to remove power issue* Remember $\ln |k|$ is a only a constant $\ln |y| = \ln |4|x^2 + 2 \ln |4|$ 3. $\frac{1}{y}$, $\frac{dy}{dx} = 2x \cdot \ln|4|$ 4. Differentiate both sides $dy/dx = (2x.ln/4/) \ge y$ $dy/dx = (2x.ln/4/) \ge 4^{(x^2+2)}$ 5. *Need to multiply by y* 6. *Now express in terms of x*

Inverse Functions:

$$\frac{d}{dx}\left(\tan^{-1}\left(\frac{x}{a}\right)\right) = \frac{a}{a^2 + x^2} \qquad \frac{d}{dx}\left(\sin^{-1}\left(\frac{x}{a}\right)\right) = \frac{1}{\sqrt{a^2 - x^2}} \qquad \frac{d}{dx}\left(\cos^{-1}\left(\frac{x}{a}\right)\right) = \frac{-1}{\sqrt{a^2 - x^2}}$$

$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$	Can invert functions in the following way also, find f'(x) and make	$\frac{1}{f'(x)}$
$\frac{1}{dx}$		$\int (\lambda)$

Derivative of an Inverse Function:

- 1. DERIVATIVE of inverted function \rightarrow Change f(x) to f(y) and diff
- 2. Need to find Inverse so switch $x \leftrightarrow y$
- 3. Change back into terms of y
- 4. This is now the inverse $f^{-1}(x)$
- 5. Using rule ${}^{dy}/{}_{dx} = {}^{1}/{}_{f'(y)}$ write findings of f'(y) and substitute the inverse of function into **derivative** to represent in terms of x

Example Find the inverse derivative of $f(x) = x^3$

Inverse \Rightarrow need f'(y) rather than f'(x) $f(x) = x^3 \Rightarrow f(y) = y^3$ $f'(y) = 3y^2$ Find the inverse function of $f(x) = x^3$ i.e. $y = x^3$ $x = y^3$ $x^{\frac{1}{3}} = y$ $\Rightarrow f^{-1}(x) = x^{\frac{1}{3}} = f(y)$ Inverse derivative: $\frac{dy}{dx} = \frac{1}{f'(y)} = \frac{1}{3y^2} = \frac{1}{3(x^{\frac{1}{3}})^2} = \frac{1}{3x^{\frac{2}{3}}}$

Complex Numbers : To find ARGUMENT

Find 1st Quadrant (Principle argument) then find $arg(\theta)$, using Argand diagram quadrant rules

The *argument* θ of the complex number can be found by plotting the Cartesian Coordinate to decide which Quadrant the principle angle θ lies in.

The Principle Argument must lie between $-\pi \le \theta \le \pi$.

- Find the 1st Quadrant angle, say α , using $\tan^{-1} | {}^{b}/_{a} | = \alpha$
- Plot the Argand diagram to decide which Quadrant (*a*, *b*) is in.
- Use the Quadrant rules to find the value of $arg(\theta)$

Complex Geometric Interpretations (Locus of a Point)

To find the locus of a point is similar to interpreting the centre & radius of a circle. The inequality used with the complex number applies to whether it is on the circumference (|z| = r); inside (|z| < r) or outside (|z| > r) the circle.

To obtain a solution in terms of x & y represent the complex number as z = x + iyWe can combine the facts that |z| = |x + iy| and $|z| = |r| = \sqrt{(x^2 + y^2)}$

Thus using these properties: $|z - a - ib| = r \Rightarrow Centre(a, b) \& radius, r$

Example 1:
Let z = (x + iy)Find the equation of the loci for |z - 2 + 3i| = 7|z - 2 + 3i| = 7Collecting real and imaginary|(x + iy) - 2 + 3i| = 7|(x + iy) - 2 + 3i| = 7Remember to drop 'i' when finding modulus|(x - 2) + i(y + 3)| = 7Square both sides to find equation of circle $\sqrt{[(x - 2)^2 + (y + 3)^2] = 7}$

⇒ Circle Centre (2, -3) with radius 7, & sketch on Argand diagram

Indicate on an Argand diagram the locus which satisfy $|\mathbf{z} - 2| = |\mathbf{z} + 3\mathbf{i}|$ $[\Rightarrow \text{ Let } \mathbf{z} = (\mathbf{x} + i\mathbf{y}) \text{ as must represent in terms of } \mathbf{x} \& \mathbf{y}]$ Collect Real & Imaginary Finding Modulus Square both sides Expand square brackets Simplify Express as equation of a line $\mathbf{x} = \frac{1}{3}\mathbf{i}$ $\mathbf{y} = \frac{1}{3}\mathbf{x} - \frac{5}{6}$ $\mathbf{x} = \frac{1}{6}\mathbf{i}$ $\mathbf{y} = \frac{1}{3}\mathbf{x} - \frac{5}{6}\mathbf{i}$ $\mathbf{y} = \frac{1}{3}\mathbf{x} - \frac{5}{6}\mathbf{i}$ $\mathbf{y} = \frac{1}{3}\mathbf{x} - \frac{5}{6}\mathbf{i}$ $\mathbf{z} = \frac{1}{6}\mathbf{z} + \frac{1}{6}\mathbf{z} + \frac{1}{6}\mathbf{z}$ $\mathbf{z} = \frac{1}{6}\mathbf{z}$ $\mathbf{z} = \frac{1}{6}\mathbf{z} + \frac{1}{6}\mathbf{z}$ $\mathbf{z} = \frac{1}{6}\mathbf{z}$ $\mathbf{z} = \frac{1}$

Complex Numbers

Solving a Cubic problem

- Find first solution by Inspection/Synthetic Division i.e. (x a) = 0
- Take this factor and use long division to obtain a Quadratic remainder
- Factorise or use Quadratic Formula to obtain the final two solutions

<u>Solving a Quartic problem</u> (below is a prelim solution from 2008/9 to see process)

- Given the first solution, say x = (a + ib) By the fundamental theorem of algebra every quartic has 4 solutions and every complex number has a conjugate pair. Thus find the conjugate pair $\overline{x} = a ib$
- Rearrange both solutions into factors and multiply to obtain a quadratic
 - (x-a-ib)(x-a+ib) [Use a multiplication grid for ease]
- Use this new quadratic expression & divide to obtain a quadratic remainder
- Factorise or use Quadratic Formula to obtain the final two solutions.

<u>De Moivre's Theorem</u>

$$z^{n} = \left[r\left(\cos\theta + i\sin\theta\right) \right]^{n}$$
$$z^{n} = r^{n} \left(\cos\left(n\theta\right) + i\sin\left(n\theta\right) \right)$$

Given $z = (\cos \theta + i \sin \theta) \& w = (\cos \psi + i \sin \psi)$

 $zw = (\cos\left(\theta + \psi\right) + i\sin\left(\theta + \psi\right)) \quad \& \quad z'_{w} = (\cos\left(\theta - \psi\right) + i\sin\left(\theta - \psi\right))$

Using Binomial Expansion & De Moivre's to express in terms of Cos or Sin

- Apply from Cartesian to Polar format of Complex number
- Rearrange to De Moivre's Theorem so expression is as a 'power'
- Expand using Binomial Expansion, take care with *i*.
- If asks for $Cos \rightarrow$ use the real values only
- If asks for Sin \rightarrow use the imaginary values only, <u>**DO NOT**</u> include i
- *Rearrange final expression to required status*

*** VERY POPULAR EXAM STYLE QUESTION

nth Roots of a Complex Number

- Write down the complex number in polar form $z = r(\cos\theta + i\sin\theta)$
- For each other additional root add 2π to the angle each stage
- Eg for cube root we would find the polar format for the first root as

1 st Root	$z = r[\cos\theta + i\sin\theta]$
2 nd Root	$z = r[\cos(\theta + 2\pi) + i\sin(\theta + 2\pi)]$
3 rd Root	$z = r[cos(\theta + 4\pi) + isin(\theta + 4\pi)]$

• Write down the cube roots of z by taking the cube root of r & dividing each of the arguments by 3

1 st Root	$Z_{1} = r^{\frac{1}{3}} [\cos(\frac{\theta}{3}) + i \sin(\frac{\theta}{3})]$
2 nd Root	$z_2 = r^{\frac{1}{3}} [cos(\frac{(\theta+2\pi)}{3}) + i sin(\frac{(\theta+2\pi)}{3})]$
3 rd Root	$Z_{3} = r^{\frac{1}{3}} [\cos(\frac{(\theta + 4\pi)}{3}) + i \sin(\frac{(\theta + 4\pi)}{3})]$

Advanced Higher Revision Notes

 n^{th} <u>Roots of Unity</u> : $z^n = 1$

E.g Solve for $z^n = 1$ OR $z^n - 1 = 0$

Since NO Imaginary Values & Real = $1 \Rightarrow \theta = 2\pi$ Thus

 $z^n = [\cos(2\pi) + i\sin(2\pi)]^n = 1$

It follows that $\cos(\frac{2\pi}{n}) + i \sin(\frac{2\pi}{n})$ is an n^{th} root of unity

As every 2π will therefore result in a root of unity: $1 = \cos(\frac{2\pi}{n}) + i \sin(\frac{2\pi}{n})$ $1 = \cos(\frac{4\pi}{n}) + i \sin(\frac{4\pi}{n})$ $1 = \cos(\frac{6\pi}{n}) + i \sin(\frac{6\pi}{n})$ $1 = \cos(\frac{8\pi}{n}) + i \sin(\frac{8\pi}{n}) \dots \Rightarrow \cos(2n\pi) + i \sin(2n\pi) = 1$

Example: Find the roots when $z^4 = 1 \rightarrow expect 4$ roots

 $z^4 = (\cos(2\pi) + i\sin(2\pi))^4$

 $1^{st} \text{ root, } z_1 = [\cos(2\pi) + i \sin(2\pi)]^{\frac{1}{4}}$ $2^{nd} \text{ root, } z_2 = [\cos(2\pi + 2\pi) + i \sin(2\pi + 2\pi)]^{\frac{1}{4}}$ $3^{rd} \text{ root, } z_3 = [\cos(2\pi + 4\pi) + i \sin(2\pi + 4\pi)]^{\frac{1}{4}}$ $4^{th} \text{ root, } z_4 = [\cos(2\pi + 6\pi) + i \sin(2\pi + 6\pi)]^{\frac{1}{4}}$

4 roots are therefore:

 $z_{1} = \cos(\frac{2\pi}{4}) + i \sin(\frac{2\pi}{4}) = \cos(\frac{\pi}{2}) + i \sin(\frac{\pi}{2}) = 0 + i = i$ $z_{2} = \cos(\frac{4\pi}{4}) + i \sin(\frac{4\pi}{4}) = \cos(\pi) + i \sin(\pi) = -1 + 0i = -1$ $z_{3} = \cos(\frac{6\pi}{4}) + i \sin(\frac{6\pi}{4}) = \cos(\frac{3\pi}{2}) + i \sin(\frac{3\pi}{2}) = 0 - i = -i$ $z_{4} = \cos(\frac{8\pi}{4}) + i \sin(\frac{8\pi}{4}) = \cos(2\pi) + i \sin(2\pi) = 1 + 0i = 1$

& can be sketched on an Argand diagram (4 roots connected would make a square)

Further Sequence and Series

Arithmetic Sequences	
$u_n = a + (n-1)d$	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$
Geometric Sequences	
$u_n = ar^{n-1}$	$S_n = \frac{a\left(1 - r^n\right)}{1 - r}$
$S_{\infty} = \frac{a}{1-r}$	
MacLaurins (Power) Series	
$f(x) = f(0) + f'(0)\frac{x^{1}}{1!} + f''(0)\frac{x^{2}}{2!}$	$f^{*} + f^{*}(0)\frac{x^{3}}{3!} + f^{i\nu}(0)\frac{x^{4}}{4!} + + f^{n}(0)\frac{x^{n}}{n!}$

Iterative Processes

For iterative processes set $x_{n+1} = g(x_n)$
If asked to show root by sketch split function into 2 easier
equations and find intersection, here the value of x will give
a good indication of the root you are trying to find.
Eg $x^2 - 2x + 7 = 0$ can be split into $y = x^2 \& y = 2x - 7$
Algebraically we can determine the function will tend to a
given root by finding $g'(x)$ & substitute the root, say $x = \alpha$
into $g'(x)$ i.e. $g'(\alpha)$.
$\left If \left g'(\alpha) \right < 1 \right $
Then our value will <u>CONVERGE</u> to the specified root.
$\left If \left g'(\alpha) \right \ge 1 \right $
Then our value DIVERGES and we must try a different
rearrangement of the function for convergence to occur.
The <u>ORDER</u> of the Sequence/function can be determined by $g'(\alpha)$
$g'(\alpha) \neq 0 \Rightarrow$ The function is <u>FIRST ORDER</u>
$\Rightarrow \overline{u_{n+1} = au_n + b}$
$g'(\alpha) = 0 \Rightarrow$ The function is <u>SECOND ORDER</u>
$\Rightarrow \boxed{u_{n+1} = au_{n+1} + bu_n + c}$

Number Proof Theory

Main types of proof involve:

- Proof by Counter-Example (Substitute values in to prove if true. Especially consider *negatives and fractions* to disprove)
- Proof by Exhaustion (Subtitute **EVERY** value in range to solve)
- Proof by Induction ******* The hot favourite!!!
- Proof by Contradiction (Especially square root & Odd/Even

questions)

Proof by Induction (basic):-

- *Let n = 1* and prove true for this case
- Assume true for n = k & substitute k in as required
- Consider n = k + 1
- Extend proof for *n* = *k* by adding extra term *n* = *k* + *1* to either side & rearrange to obtain original format
- Statement:
 <u>As true for n = 1, assumed true for n = k and by proof by induction</u> <u>also true for n = k + 1, assume true for ∀ n ∈ N</u> {or for whichever set stated, could be n ∈ Z⁺, n ≥ 0 etc..}

Proof by Induction Example: $05. \begin{array}{c} \frac{4412008(9 \text{ Mini})}{3} \\ \frac{3}{5} \\ \frac{3}{5}$ Let n=1 Lits = 3 = 3 = 3 (3-1)(3+2) = 2×5 = 10 $R+S = \frac{1}{2} - \frac{1}{5} = \frac{1}{2} - \frac{1}{5} = \frac{5 - 2}{10} = \frac{3}{10}$ MAS = RUS / the for n=1 Assume the form=k $\frac{n=k}{5} = \frac{3}{(3r+2)} = \frac{1}{2} - \frac{1}{3k+2}$ Consider n=k+1 $\begin{array}{c} n = k \\ \Xi_{1}^{\prime} \\ r = 1 \end{array} \begin{array}{c} 3 \\ (3r - 1) (3r + 2) \end{array} \begin{array}{c} 4 \\ (3(k + 1) - 1) (3(k + 1) + 2) \end{array} \begin{array}{c} 4 \\ (3(k + 1) - 1) (3(k + 1) + 2) \end{array} \begin{array}{c} 4 \\ (3(k + 1) - 1) (3(k + 1) + 2) \end{array} \begin{array}{c} 4 \\ (3(k + 1) - 1) (3(k + 1) + 2) \end{array} \end{array}$ $= \left(\frac{1}{2} - \frac{1}{3k+2}\right) + \frac{3}{(3k+3-1)/3k+3+2}$ $= \frac{1}{2} - \frac{1}{3k+2} + \frac{3}{(3k+2)(3k+5)}$ $= \frac{1}{2} + \frac{3}{(3k+2)(3k+5)} - \frac{1 \cdot (3k+5)}{(3k+2)(3k+5)}$ $= \frac{1}{2} + \frac{3-3k-5}{(3k+2)(3k+5)}$ 5 $= \frac{1}{2} + \frac{-3k-2}{(3k+2)(3k+5)}$ $= \frac{1}{2} + \frac{-(3k+2)}{(3k+2)(3k+5)}$ $=\frac{1}{2}-(\frac{1}{3k+5})$ As the for n=1, assumed the for n= k and by proof of mathematical Induction also the for n=k+1, conjecture is the trnew.

<u>*Harder Proof by Induction (Powers): 8ⁿ – 1 is divisible by 7</u>

Assume true for $n = k$: $8^{k} - 1$	= 7m (where m	divisible by 7 so true for $n = 1\checkmark$ n is a positive integer)
		where m is a positive integer)
(Trick is to $+c - c$) (as helps find a common factor)	$= 8^{k} \cdot 8^{1} - 1 + 1^{k}$ = $8^{k} \cdot 8^{1} - 8 + 1^{k}$	
(as helps find a contributing factor) (re-create $n = k$ statement)	$= 8(8^{k}-1) + 7$	
(so can replace with 7 <i>m</i>)	= 8(7m) + 7	
(can now show have multiple of 7)	= 7(8m + 1)	Let $(8m + 1) = N$ to simplify
	=7N	final expression (not nec, but nice)

<u>Statement:</u> As true for n = 1, assumed true for n = k and by proof by induction also true for n = k + 1, assume true for $\forall n \in N$

Alternatively if pretty tricky then can rearrange assumption for n = kand substitute into problem when considering n = k + 1

 $8^1 - 1 = 7 = 7 \times 1$ \rightarrow divisible by 7 so true for $n = 1 \checkmark$ *Let n* = 1: Assume true for n = k: $8^k - 1 = 7m$ (where m is a positive integer) $8^{k+1} - 1 = 8^k \cdot 8^1 - 1$ (where m is a positive integer) Consider n = k + 1: (if $8^k - 1 = 7m$) $=(7m+1) \cdot 8^{1}-1$ (Then $8^k = (7m + 1)$) = 8(7m + 1) - 1(use this to replace 8^{k}) = 56m + 8 - 1= 56m + 7(Simplify expression) (can now show have multiple of 7) = 7(8m + 1)Let (8m + 1) = N to simplify = **7***N final expression (not nec, but nice)*

<u>Statement:</u> As true for n = 1, assumed true for n = k and by proof by induction also true for n = k + 1, assume true for $\forall n \in N$

Induction & Inequalities

- Use similar steps
- Will find it tricky to rearrange to final answer as inequality
- So leave some space
- As you know what the final answer with n = k+1 looks like
- Write this expression below your given space
- Then consider what has happened in space between this
- As you must justify the inequality.

Proof by Contradiction:

- Assume their conjecture is false
- Assume you are true with a contradicting statement
- Try to prove, but you will have an error → CONTRADICTION!!
- Hence initial conjecture is true!!

Euclidean Algorithm

The Greatest Common Divisor (gcd) [or highest common factor]

$$78 = 1.42 + 36$$

$$42 = 1.36 + 6$$

$$36 = 6.6 + 0$$
Therefore the $gcd(42, 78) = 6$

Obtain values of x & y using Euclidean Algorithm:

E.g. Find the values of x & y which satisfy the following Euclidean Algorithm

$$gcd(2695, 1260) = 2695x + 1260y$$

• First find the gcd

2695 = 2.1260 + 175 1260 = 7.175 + 35175 = 5.35 + 0 Therefore the gcd(2695, 1260) = 35

• Now starting at the second last line work backwards:-

Then from line 2 if: 1260 = 7.175 + 35 Then

$$35 = 1260 - 7.175$$

= 1260 - 7.(2695 - 2.1260)
= 1260 - 7.2695 + 14.1260
 \Rightarrow 35 = -7.2695 + 15.1260

Thus gcd(2695, 1260) = 2695x + 1260y & gcd(2695, 1260) = 35

→
$$2695x + 1260y = 35$$

and -7.2695 + 15.1260 = 35 => x = -7 & y = 15

Diophantine (*if equation looks similar but RHS has changed*)

From above 2695x + 1260y = 35 has solutions x = -7 & y = 15If $2695x + 1260y = 105 \Rightarrow$ Original solutions $\underline{x \ 3} \Rightarrow x = -21$ & y = 45

11 Vectors

Component form of a vector

 $a\underline{i} + b\underline{j} + c\underline{k}$

Direction Ratios & Cosine Ratios $Let \quad \underline{p} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a\underline{i} + b\underline{j} + c\underline{k}$ The vector \underline{p} makes an angle of α with the x-axis, an angle of β with the y-axis and an angle of γ with the z-axis. Thus, $\cos \alpha = \frac{a}{|\underline{p}|} \quad ;\cos \beta = \frac{b}{|\underline{p}|} \quad ;\cos \gamma = \frac{c}{|\underline{p}|}$ <u>THE DIRECTION COSINES are the values:</u> $\frac{a}{|\underline{p}|}; \frac{b}{|\underline{p}|} \text{ and } \frac{c}{|\underline{p}|}$ The <u>DIRECTION RATIOS</u> are the ratios of a : b : c

The Scalar Product	
	Then $\underline{p} \bullet \underline{q} = \mathrm{ad} + \mathrm{be} + \mathrm{cf}$

<u>Scalar Product Properties</u>		
Property 1	→	$a \cdot (b+c) = a \cdot b + a \cdot c$
Property 2	→	$a \cdot b = b \cdot a$
Property 3	→	$\boldsymbol{a} \cdot \boldsymbol{a} = \left \boldsymbol{a} \right ^2 \ge 0$
Property 4	→	$a \cdot a = 0$ if and only if (iff) $a = 0$
Property 5	>	For non-zero vectors, a and b are perpendicular iff a . b = 0

In geometric form, <u>the scalar product of two vectors</u> a and b is defined as $a \cdot b = |a| |b| \cos\theta$ where θ is the angle between a and b, $0 \le \theta \le 180^{\circ}$

Vector Product Properties

Property 1	\rightarrow	$a \ge (b+c) = a \ge b + a \ge c$
Property 2	\rightarrow	$a \ge b = -b \ge a$ (i.e. $AB = -BA$)
Property 3	\rightarrow	$\mathbf{a} \mathbf{x} \mathbf{a} = \mathbf{a} ^2 \ge 0$
Property 4	\rightarrow	$a \ge (b \ge c) \neq (a \ge b) \ge c$
- ·	\rightarrow	If $a \cdot (a \cdot \mathbf{x} \cdot b) = 0$ and $b \cdot (a \cdot \mathbf{x} \cdot b) = 0$
		The vector a x b is perpendicular to both a & b

The Vector product in geometric form of **a** and **b** is defined with

<u>Magnitude</u> of $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin\theta$ where θ is the angle between \mathbf{a} and \mathbf{b} , $\theta \le \theta \le 180^{\circ}$

Direction perpendicular to both a and *b* as determined by the Right Hand Rule.

[NB $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ iff \mathbf{a} and \mathbf{b} are parallel]

Vector form of the equation of a line

 $\underline{r} = \underline{a} + \lambda \underline{d}$

where $\underline{a} = \overrightarrow{OP}$, \underline{d} is a vector parallel to the required line and λ is a real number.

i.e. the vector equation is $\underline{\mathbf{r}} = (\underline{a}_i + \underline{a}_j + \underline{a}_k) + \lambda(\underline{d}_i + \underline{d}_j + \underline{d}_k)$

Parametric form of the equation of a line

The parametric equations of a line through the point $P = (a_1, a_2, a_3)$ with direction $\underline{d} = d_1 i + d_2 j + d_3 k$ are $x = a_1 + \lambda d_1$, $y = a_2 + \lambda d_2$, $z = a_3 + \lambda d_3$ where λ is a real number.

Symmetric form of the equation of a line If $x = a_1 + \lambda d_1$, $y = a_2 + \lambda d_2$, $z = a_3 + \lambda d_3$ are parametric equations of a line, the symmetric equation of the line is: $\frac{x-a_1}{d_1} = \lambda$, $\frac{y-a_2}{d_2} = \lambda$, $\frac{z-a_3}{d_3} = \lambda$ These symmetric equations are also known as the <u>CARTESIAN EQUATIONS</u> OF A LINE. • Note that if any of the denominators are zero then the corresponding numerator is also zero. This means the vector is <u>PARALLEL</u> to an axis. • Note that if a denominator is 1, the form of equations requires that it should be left there. • If 2 lines are parallel their direction ratios are proportional

Vector form of the equation of a line

If you are given the position vector, \underline{a} & the direction, $\underline{d} \rightarrow r = a + \lambda d$

If you are <u>NOT</u> told the direction, but are given 2 points e.g. A(1, 2, 3) & B(4, 5, 6), find the direction by finding the directed line segment \overrightarrow{AB} :

$$A = (1, -2, 3) \& B(4, 5, -7)$$

$$\overrightarrow{AB} = \underline{b} - \underline{a} = \begin{pmatrix} 4 \\ 5 \\ -7 \end{pmatrix} - \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 7 \\ -10 \end{pmatrix} = \underline{d}$$

Vector Equ	ation of line	
$\underline{r = \underline{a} + \lambda \underline{d}}$		
$\underline{r} = (i - 2j + j)$	$(3k) + \lambda(3i + 7j -$	10k)
Parametric for	rm of the equation	on of a line
$x = 1 + 3\lambda ,$	$y = -2 + 7\lambda ,$	$z = 3 - 10\lambda$

Sym	nmetric form	of the equ	uation of a line
If	$\lambda = \frac{x-1}{3}$	$=\frac{y+2}{7}$	$=\frac{z-3}{-10}$

Point of Intersection between 2 lines

- *Lines must be in parametric form first* $(x = a + \lambda d, etc)$
- Use λ for L_1 & μ for L_2
- Set your x, y and z parametrics equal to each other
- Use simplest equation & rearrange so $\lambda = to$ form of μ
- Then use with other equations to solve for $\lambda \& \mu$
- If when replacing these into initial parametrics both lines have exactly the same values for x, y & z then the lines intersect at this point, otherwise they don't intersect (see example)

<u>Ex</u>: Find the point of intersection between the two lines.

 $L_{1}: \frac{x-2}{1} = \frac{y+2}{3} = \frac{z+1}{5}$ $L_{1}: x = 2 + \lambda; y = -2 + 3\lambda; z = -1 + 5\lambda$ $L_{2}: x = 1 + \mu; y = -1 + \mu; z = 2 + \mu$ $x \Longrightarrow 2 + \lambda = 1 + \mu$ $y \Longrightarrow -2 + 3\lambda = -1 + \mu$ $z \Longrightarrow -1 + 5\lambda = 2 + \mu$

Taking the parametrics for x we have $2 + \lambda = 1 + \mu$ $\lambda = -1 + \mu$ Taking the parametrics for y & substituting for λ : $-2 + 3\lambda = -1 + \mu$ $-2 + 3(-1 + \mu) = -1 + \mu$ $-2 - 3 + 3\mu = -1 + \mu$ $2\mu = 4$ $\underline{\mu = 2}$

We can now equate these values by substitution $\mu = 2 \quad \& \quad \lambda = -1 + \mu \implies \lambda = -1 + 2$ $\lambda = 1$

 $\begin{array}{ll} \underline{\mu} = 2 & \& & \lambda = 1 \\ x \Longrightarrow 2 + \lambda = 2 + 1 = 3 & x \Longrightarrow 1 + \mu = 1 + 2 = 3 \\ y \Longrightarrow -2 + 3\lambda = -2 + 3 = 1 & y \Longrightarrow -1 + \mu = -1 + 2 = 1 \\ z \Longrightarrow -1 + 5\lambda = -1 + 5 = 4 & z \Longrightarrow 2 + \mu = 2 + 2 = 4 \end{array}$

As both lines result in same values the point of intersection is therefore (3, 1, 4)

Angle between 2 lines

If we have the symmetric form we may obtain both directions and find the angle between the 2 lines using: $Cos\theta = \frac{d_1 \cdot d_2}{|d_1||d_2|}$

Equation of a plane

$\underline{r}.\underline{n} = \underline{a}.\underline{n}$

 \underline{n} is the normal (perpendicular) to plane, \underline{a} is position vector

Ex: Find the <u>Vector Equation</u> of a Plane throug (-1, 2, 1) with normal $\underline{n} = \underline{i} - \underline{3j} + \underline{2k}$

$$Let \quad \underline{a} = \begin{pmatrix} -1\\2\\1 \end{pmatrix}; \quad \underline{n} = \begin{pmatrix} 1\\-3\\2 \end{pmatrix}$$

$$Then \quad \underline{r} \bullet \begin{pmatrix} 1\\-3\\2 \end{pmatrix} = \begin{pmatrix} -1\\2\\1 \end{pmatrix} \bullet \begin{pmatrix} 1\\-3\\2 \end{pmatrix} = -1 - 6 + 2 = -5$$

$$\Rightarrow \quad \underline{r} \bullet (i - 3j + 2k) = -5$$

$$\xrightarrow{\mathbf{r}} \bullet (i - 3j + 2k) = -5$$

$$The Cartesian Equation is similar except$$

$$x, y \& z \text{ are used and the normal is represented}$$

$$by the values in front of x, y \& z$$

$$\Rightarrow \quad x - 3y + 2z = -5$$

Using 3 points to find the Equation of a Plane

If the normal is NOT given we must find it by using the vector product.

E.g. Find Cartesian equation of a plane given the points $A(1,\,2,\,1);\,B(\text{-}1,\,0,\,3)\;\&\;C(0,\,5,\,\text{-}1)$

$$Let \quad \underline{a} = \begin{pmatrix} 1\\2\\1 \end{pmatrix}; \quad \underline{b} = \begin{pmatrix} -1\\0\\3 \end{pmatrix}; \quad \underline{c} = \begin{pmatrix} 0\\5\\-1 \end{pmatrix}$$
$$\overrightarrow{AB} = b - a = \begin{pmatrix} -1\\0\\3 \end{pmatrix} - \begin{pmatrix} 1\\2\\1 \end{pmatrix} = \begin{pmatrix} -2\\-2\\2 \end{pmatrix}$$
$$\overrightarrow{AC} = c - a = \begin{pmatrix} 0\\5\\-1 \end{pmatrix} - \begin{pmatrix} 1\\2\\1 \end{pmatrix} = \begin{pmatrix} -1\\3\\-2 \end{pmatrix}$$
$$Then \quad \overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} i & j & k\\-2 & -2 & 2\\-1 & 3 & -2 \end{pmatrix} = (4 - 6)i - (4 - (-2))j + (-6 - 2)k$$
$$\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = -2i - 6j - 8k$$
$$\Rightarrow \underline{n} = \underline{i} + 3\underline{j} + 4\underline{k} \text{ as normal is represented as a multiple of this}$$
$$Then \quad r.n = a.n \Rightarrow r \bullet \begin{pmatrix} 1\\3\\4 \end{pmatrix} = \begin{pmatrix} 1\\2\\1 \end{pmatrix} \bullet \begin{pmatrix} 1\\3\\4 \end{pmatrix} = 1 + 6 + 4 = 11$$
$$\Rightarrow \quad \underline{r} \bullet (i + 3j + 4k) = 11$$
$$The Cartesian Equation \Rightarrow \quad x + 3y + 4z = 11$$

Vectors: Plane & Planes

The angle between 2 planes can be found by first finding both normals:

Eg
$$P_1: 2x + 3y - 5z = 1 \rightarrow \underline{n} = (2, 3, -5)$$

 $P_2: 3x - 4y + 7z = 2 \rightarrow \underline{m} = (3, -4, 7)$

Angle between 2 planes:	Cos $\theta = \underline{n \cdot m}$
	<u> n</u> <u>m </u>

Intersection of 3 planes: Gaussian Elimination/Algebraic Manipulation

Easiest method is to use algebraic manipulation

E.g. Given 2 planes 4x + y - 2z = 3 and x + y - z = 1, find the line of intersection if it exists.

$P_1: 4x + y - 2z = 3$	$P_1: 4x + y - 2z = 3$
$\underline{P_2:} x+y-z = 1$	$2 P_2: 2x + 2y - 2z = 2$
$\overline{P}_1 - P_2: 3x - z = 2$	$\overline{P_1 - 2P_2 : 2x - y = 1}$

Represent x in terms of y, and separately in terms of x to obtain the symmetric equation of a line

$$3x = z + 2$$

$$x = \frac{z + 2}{3}$$

$$2x = y + 1$$

$$x = \frac{y + 1}{2}$$

Let
$$x = \lambda$$
 \Rightarrow $\lambda = \frac{x-0}{1} = \frac{y+1}{2} = \frac{z+2}{3}$

3 possible Solutions when investigating 3 planes intersecting:

- Intersect at a point → No lines parallel so obtain an exact solution
- Infinite solutions on a line 0 0 0 / 0 → equations cancel as parallel planes and equal (coincident) remaining 2 lines can be rearranged to find the line of intersection, with infinite solutions existing
- 2 parallel and unequal, therefore not intersection 0 0 0 / k

Vectors: Lines & Planes

The angle between a line and a plane can be found by first finding the direction of the line and the normal to the plane:

Eg
$$P_1: 2x + 3y - 5z = 1$$

 $L_1: \frac{x-4}{1} = \frac{y+7}{-2} = \frac{z+2}{3}$
 $\rightarrow \underline{n} = (2, 3, -5)$
 $\underline{d} = (1, -2, 3)$

Angle between the line and plane:

 $Cos \ \theta = \underline{n \ .d}_{|\underline{n}| \ |\underline{d}|}$

Intersection of a Line and a Plane

<u> 4 Main Steps</u>

- Change line into parametric form if not given
- Substitute these for x, y & z into the plane
- Solve for λ
- Substitute this value for λ back into parametric to find point

$$L_{1}: \quad \frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{2} \implies x = 1 + \lambda; \quad y = 2 + \lambda; \quad z = 3 + 2\lambda$$

$$P_{1}: \quad x - y - 2z = -15$$

$$x - y - 2z = -15$$

$$(1 + \lambda) - (2 + \lambda) -2(3 + 2\lambda) = -15$$

$$1 + \lambda - 2 - \lambda - 6 - 4\lambda = -15$$

$$-7 - 4\lambda = -15$$

$$-4\lambda = -8$$

$$\cancel{2} \lambda = 2$$

 $x = 1 + \lambda = 1 + 2 = 3$ $y = 2 + \lambda = 2 + 2 = 4$ $z = 3 + 2\lambda = 3 + 4 = 7$ Line & Plane intersect at (3, 4, 7)

12 Matrix Algebra

Matrix Laws/Properties

1. <u>Addition Law</u> (**Need same order for this to work**)

Property 1 \rightarrow A + B = B + A

2. Commutative Law

Given
$$A_{(r_1 \times c_1)}$$
 & $B_{(r_2 \times c_2)}$
Can only multiply if $c_1 = r_2$
 $\equiv \equiv \equiv \equiv \equiv \equiv$
i.e. $(3 \times 2) \times (2 \times 4) = (3 \times 4)$ matrix solution.
but $(2 \times 4) \times (3 \times 2) \neq$ possible solution as $c_1 \neq r_2$

Property 2 \rightarrow $AB \neq BA$

3. <u>Assosciative Law</u> (**Need to comply with multiplication rules**)

Property 3 \rightarrow ABC = A(BC) = (AB)C

4. Distributive Law

Property 4
$$\rightarrow$$
 $A(B+C) = AB + AC$

5. <u>Transpose Law</u>

A^{T} or A' Transpose
This is when we interchange rows and columns
i.e. $\begin{pmatrix} 1 & 4 & 6 & 3 \\ 2 & 5 & -1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 6 & -1 \\ 3 & -5 \end{pmatrix}$
$(A^{\mathrm{T}})^{\mathrm{T}} = A$ or $(A')' = A$
$ \begin{pmatrix} A^{\mathrm{T}} \end{pmatrix}^{\mathrm{T}} = A or (A')' = A As, r \to c \to r \& c \to r \to c $
Property 7 $AB^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$
Property 8 $(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}$
Property 9 $(AB)^{-1} = B^{-1}A^{-1}$
Using this we can then show,
$(AB)(AB)^{-1} = AB(B^{-1}A^{-1})$
$=A\Big(BB^{-1}\Big)A^{-1}$
$=A(I)A^{-1}$
$=AA^{-1}$
$\underline{=I}$
As $AA^{-1} = I$, similarly $(AB)(AB)^{-1}$ should $= I$

Transformations Matrices - 4 TO KNOW !!!

Determinant and Inverse Matrices

If we wish to find the inverse matrix we must first obtain the determinant of the function often called **det**(**A**)

If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then the determinant of A is called $\det(A) = \frac{1}{ad - bc} \quad \text{in any } 2 \times 2 \text{ matrix}$ It is a little more complicated for a 3×3 matrix $\det(A) = \frac{1}{a(ei - fh) - b(di - fg) + c(dh - eg)}$ Once we know how to find the determinant we can easily find the inverse of the 2×2 matrix as follows If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$; $\det(A) = \frac{1}{ad - bc}$ then inverse is $\begin{vmatrix} A^{-1} = \begin{pmatrix} a & b \\ c & d \end{vmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ Again it is a little more complicated for a 3×3 matrix Better to set up a EROs problem with $\lceil A | I \rceil$ and use Gaussian Elimination to change the LHS into I, $[I|A^{-1}]$ The RHS will then be the Inverse of the matrix. $\begin{bmatrix} \mathbf{A} | \mathbf{I} \end{bmatrix} = \begin{pmatrix} a & b & c | 100 \\ d & e & f | 010 \\ g & h & i | 001 \end{pmatrix} \rightarrow \begin{bmatrix} \mathbf{I} | \mathbf{A}^{-1} \end{bmatrix}$ Lastly When the transpose equals the inverse the matrix is Orthogonal.

 $A^{\mathrm{T}} = A^{-1} \Longrightarrow \det A = \pm 1$

Further Ordinary Differential Equations

<u>First Order Differential Equations</u> $\binom{dy}{dx}$ only

$\frac{dy}{dx} + P(x)y = f(x)$	Rearrange into this format to determine P(x)
$I(x) = e^{\int P(x)dx}$	Use P(x) to find the Integrating Factor,
Then,	(**no constant here, leave 'c' until end**)
$I(x) y = \int I(x) f(x) dx$	Then rearrange to find y, and ensure when
	integrating at this stage to include constant, c.

Second Order Differential Equations

<u>Homogenous 2^{nd} Order Diff Eqns => RHS = 0</u>

By using this property we can find the <u>Auxiliary Equation</u> and solve it to find what is known as the <u>Complimentary Function</u>

 $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$ Is homogeneous format used to find Auxiliary Equation. $am^2 + bm + c = 0$ Substituting m²; m & c in place of $\frac{d^2y}{dx^2}$; $\frac{dy}{dx}$ & y Then factorise (may require the quadratic formula) $m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ There are 3 Complementary Solutions, (y_c) possible • $b^2 - 4ac > 0 \Rightarrow 2$ real distinct roots say $m_1 \& m_2$ Then solution is of the format: $y = Ae^{m_1} + Be^{m_2}$ • $b^2 - 4ac = 0 \Rightarrow$ A repeated root, say m Then solution is of the format: $\overline{y} = Ae^m + Bxe^m$ • $b^2 - 4ac < 0 \Rightarrow 2$ complex roots, say (p ± iq) Then solution is of the format : $y = e^{px} \left(A\cos(qx) + BSin(qx) \right)$ Note here that the value of q is taken only, the sign and *i* are ignored.

Non-Homogenous 2^{nd} Order Differential Equations \rightarrow Find a

<u>Particular Integral</u> (Need the Complimentary Function & a Particular Integral)

 $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$ Is Non-homogeneous ($\neq 0$).

Depending on the RHS value for f(x) will determine what we shall set y=?

• If is a numerical value i.e. f(x) = 3, then we shall set y = a

• If it is a linear function i.e. f(x) = 2x + 5, then we shall set y = ax + b

• If it is a quadratic function i.e. $f(x) = 5x^2 + 3x - 4$, then we shall set $y = ax^2 + bx + c$

• If it is a cubic function i.e. $f(x) = 2x^3 + 7x - 8$, then we shall set $y = ax^3 + bx^2 + cx + d$

• If it is an exponential function i.e. $f(x) = e^{2x}$, then we shall set $y = ke^{2x}$,

In general for any exponential value, say r then $y = ke^{rx}$

• If is a trig function i.e. $f(x) = 2\cos(3x)$, then we shall set y = p

• If it is a combination of any two or more we treat each separately i.e. f(x) + g(x)

When the required value of y has been chosen we then carry out Second Order Differentiation:

y = k[f(x)] By differentiating twice we can then substitute

 $\frac{dy}{dx} = ?$ into the LHS for values of

$$\frac{d^2 y}{dx^2} = ? \qquad \qquad \mathbf{a} \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = k \left[f(x) \right]$$

After substituting, it is then possible to rearrange and solve the unknowns on the RHS This process finds the Particular Integral, (y_p)

The final solution to the 2^{nd} O.D.E. problem consists of combining the homogeneous solution with the non-homogeneous

 $i.e \quad \boxed{y = y_c + y_p}$

CARE with the Exponential functions

If the Auxiliary Equation has similar roots to that of the RHS f(x) value we must make additional steps:

• If there is a single root of the auxiliary equation $(m_1 \text{ or } m_2)$

which resembles $f(x) = ke^{rx} \Rightarrow y_p = kxe^{rx}$

• If there is a repeated root of the auxiliary equation (m)

which resembles
$$f(x) = ke^{rx} \Longrightarrow |y_p| = kx^2 e^{rx}$$