Advanced Higher Revision Notes

Unit 1

1.1 Binomial Expansions
1.2 Partial Fractions

2 Differentiation
3 Integration
4 Functions \& Curve Sketching
5 Gaussian Elimination

Unit 2

1 Further Differentiation
2 Sequence \& Series
3 Further Integration
4 Complex Numbers
5 Proof Theory

Unit 3

1 Vectors, Lines \& Planes
2 Matrices \& Transformations
3 Further Sequence \& Series and MacLaurins
$4 \quad 1^{\text {st }} \& 2^{\text {nd }}$ Ordinary Differential Equations
5 Euclidean Algorithm \& Further Proof Theory

Advanced Higher Revision Notes

1.1 Binomial Expansions

$$
\binom{n}{r}=\left(\frac{n!}{r!(n-r)!}\right)=\binom{n}{n-r}
$$

where

$$
\begin{array}{ll}
n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 & 11 \\
n!=n \times(n-1)! & 121
\end{array}
$$

and

$$
(n-1)!=(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1
$$

Given

$$
n!=n \times(n-1)!
$$

Etc....

Use property with $\quad r(r-1)!=r!\quad \& \quad(n-r+1)(n-r)=(n-r+1)!$ to prove

$$
\binom{n}{r-1}+\binom{n}{r}=\binom{n+1}{r}
$$

Binomial Expansion

$$
(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{n-r} y^{r}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+. .+\binom{n}{r} x^{n-r} y^{r}+. .+\binom{n}{n} y^{n}
$$

Example Find the coefficient Independent of \boldsymbol{x} in the expansion of $\left(2 x+\frac{1}{x}\right)^{4}$

$$
\begin{aligned}
\left(2 x+\frac{1}{x}\right)^{4} & =\sum_{r=0}^{4}\binom{4}{r}(2 x)^{4-r}\left(\frac{1}{x}\right)^{r} \\
& =\sum_{r=0}^{4}\binom{4}{r}(2)^{4-r}(x)^{4-r}\left(x^{-1}\right)^{r}=\binom{4}{r}(2)^{4-r}(x)^{4-r}\left(x^{-r}\right) \\
& =\binom{4}{r}(2)^{4-r}(x)^{4-r-r} \\
& =\binom{4}{r}(2)^{4-r}(x)^{4-2 r} \xrightarrow{\text { Independent when }(4-2 r)=0} \begin{aligned}
2 r & =4 \\
\Rightarrow r & =2
\end{aligned}
\end{aligned}
$$

Thus coefficient when $\mathrm{r}=2$ is, $\mathrm{C}=\binom{4}{2}(2)^{4-2}(x)^{4-4}$

$$
\begin{aligned}
& =\frac{4!}{2!(4-2)!} \times(2)^{2} \\
& =\frac{4 \times 3 \times 2!}{2!\times 2!} \times 4=\frac{12}{2} \times 4=6 \times 4=\mathbf{2 4}
\end{aligned}
$$

Advanced Higher Revision Notes
1.2 Partial Fractions: (7 Types to consider)

1-Ouadratic

$$
\frac{4 x+1}{(x+1)(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}
$$

$\underline{2-Q u a d r a t i c ~ w i t h ~ r e p e a t e d ~ f a c t o r s ~}$

$$
\frac{2 x-1}{(x-3)^{2}}=\frac{A}{(x-3)}+\frac{B}{(x-3)^{2}}
$$

3-Cubic

$$
\frac{x^{2}-7}{(x-1)(x+2)(x-4)}=\frac{A}{(x-1)}+\frac{B}{(x+2)}+\frac{C}{(x-4)}
$$

4-Cubic with 2 repeated factors

$$
\frac{5 x+2}{(x+3)(x-2)^{2}}=\frac{A}{(x+3)}+\frac{B}{(x-2)}+\frac{C}{(x-2)^{2}}
$$

$5-$ Cubic with 3 repeated factors

$$
\frac{x^{2}-7 x+4}{(x-1)^{3}}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}}
$$

6-Quadratic which can't be factorised

$$
\frac{3 x^{2}+2 x+1}{(x+1)\left(x^{2}+2 x+2\right)}=\frac{A}{(x+1)}+\frac{B x+C}{\left(x^{2}+2 x+2\right)}
$$

7 - Higher polynomial on numerator \Rightarrow Need to DIVIDE first

$$
\frac{x^{3}+2}{x(x-3)}=\frac{x^{3}+2}{x^{2}-3 x}=x+3+\frac{9 x+2}{x(x-3)}=x+3+\frac{A}{x}+\frac{B}{(x-3)}
$$

Need to use long division before using partial fractions when higher degree of polynomial on numerator. Then solve Partial Fractions as normal.

Advanced Higher Revision Notes

2 Differentiation

$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
$a x^{n}$	$n a x^{n-1}$
sinax	$a \operatorname{cosax}$
cosax	$-a \operatorname{sinax}$
$\tan x$	$\sec ^{2} x$
$\operatorname{cosec} x=\left(\frac{1}{\sin x}\right)$	$-\operatorname{cosec} x \cot x$

$\sec x=\left(\frac{1}{\cos x}\right) \quad \sec x \tan x$
$\cot x=\left(\frac{1}{\tan x}\right) \quad-\operatorname{cosec}^{2} x$
$\ln |x| \quad \frac{1}{x}$
$e^{a x} \quad a e^{a x}$

Quotient Rule:

$\frac{f(x)}{g(x)}$ or $\frac{u}{v} \quad \frac{u^{\prime} v-u v^{\prime}}{v^{2}}$

Product Rule:

$f(x) g(x)$ or $u v \quad u ' v+u v^{\prime}$

Chain Rule:

$(a x+b)^{n}$

$$
\begin{aligned}
& n(a x+b)^{n-1} \cdot a \\
& =a n(a x+b)^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Other Formulae } \\
& 1+\tan ^{2} x=\sec ^{2} x
\end{aligned} \begin{array}{r}
\sin ^{2} x+\cos ^{2} x=1 \\
\sin ^{2} x=1-\cos ^{2} x \\
\text { sin } x=\sqrt{\left(1-\cos ^{2} x\right)} \\
\begin{aligned}
\cos ^{2} x=1 \sin ^{2} x
\end{aligned} \\
\begin{array}{r}
\cos x=\sqrt{\left(1-\sin ^{2} x\right)} \\
\begin{array}{r}
\sin 2 x
\end{array} \\
\begin{array}{r}
\cos 2 x
\end{array} \\
=\cos ^{2} x-\sin ^{2} x \\
\\
=2 \cos ^{2} x-1 \\
=1-2 \sin ^{2} x
\end{array}
\end{array}
$$

$$
\begin{aligned}
\text { If } \cos 2 x & =1-2 \sin ^{2} x \\
2 \sin ^{2} x & =1-\cos 2 x \\
\sin ^{2} x & =\frac{1}{2}(1-\cos 2 x) \\
\text { If } \cos 2 x & =2 \cos ^{2} x-1 \\
2 \cos ^{2} x & =1+\cos 2 x \\
\cos ^{2} x & =\frac{1}{2}(1+\cos 2 x)
\end{aligned}
$$

$$
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B
$$

$$
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B
$$

Parametric: $\left.\quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t} \quad \& \quad \frac{d^{2} y}{d x^{2}}={ }^{d} / \frac{d x}{d x} / d x\right)$
Inverse:
$\frac{d}{d x}\left(\tan ^{-1}\left(\frac{x}{a}\right)\right)=\frac{a}{a^{2}+x^{2}} \quad \frac{d}{d x}\left(\sin ^{-1}\left(\frac{x}{a}\right)\right)=\frac{1}{\sqrt{\left(a^{2}-x^{2}\right)}} \quad \frac{d}{d x}\left(\cos ^{-1}\left(\frac{x}{a}\right)\right)=\frac{-1}{\sqrt{\left(a^{2}-x^{2}\right)}}$

Differentiating: Distance $s(t) \Rightarrow$ Velocity, $v(t) \Rightarrow$ Acceleration, $a(t)$

$$
s(t) \Rightarrow \quad \frac{d s}{d t} \quad \Rightarrow \quad s^{\prime}(t)=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
$$

Advanced Higher Revision Notes

3 Integration Rules

$$
\int F^{\prime}(x) d x=f(x)+c \quad \int_{a}^{b} f(x) d x=F(b)-F(a)
$$

$$
\int[a f(x)+b g(x)] d x=a \int f(x) d x+b \int g(x) d x
$$

$\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
$\int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+c \quad \int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+c$
$\int \sec ^{2}(a x+b) d x=\frac{1}{a} \tan (a x+b)+c \quad \int-\operatorname{cosec}^{2} x d x=\cot x+c$
$\int \sec x \tan x d x=\sec x+c$
$\int-\cos e c x \cot x d x=\cos e c x+c$
$\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \quad \int \frac{1}{a x+b} d x=\frac{1}{a} \ln (a x+b)+c$
$\int \frac{1}{\sqrt{\left(a^{2}-x^{2}\right)}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c \quad \int e^{a x} d x=\frac{e^{a x}}{a}+c$
$\int \frac{-1}{\sqrt{\left(a^{2}-x^{2}\right)}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c$

Main Methods of Integration

1. Volume of Revolution [if on x-axis use dx, if on y use dy]
2. Higher power on numerator \rightarrow Division \& Partial Fractions
3. Substitution [**Remember to amend integral values and $d x$]
4. Integration by Parts $\int u v^{\prime}=\left\{u v-\int u^{\prime} v\right\}_{\text {[diff easier function] }}$
5. Separation of Variables. Often involves ln \& remember $+\boldsymbol{C}$ then take exponential of both sides to solve [Let $A=e^{c}$]
6. Inverse Trig function [May appear within partial fractions]
7. Combination of all of the above

Advanced Higher Revision Notes

Applied Integration

1. Volumes of Revolution

[i.e. Use dx if rotated on x-axis and dy if rotated on y-axis]

Ex 1: The container with function $y=x^{2}+2$ is rotated around the x-axis between $\boldsymbol{x}=1$ and $\boldsymbol{x}=2$ [As around \boldsymbol{x}-axis $=>$ use $\boldsymbol{d x}$ and formula with \boldsymbol{y}^{2}]

$$
\begin{aligned}
V & =\int \pi y^{2} d x \\
& =\int_{1}^{2} \pi\left(x^{2}+2\right)^{2} d x=\int_{1}^{2} \pi\left(x^{4}+4 x^{2}+4\right)^{2} d x=\pi\left[\frac{x^{5}}{5}+\frac{4 x^{3}}{3}+4 x\right]_{1}^{2} \\
& =\pi\left\{\left[\frac{32}{5}+\frac{32}{3}-8\right]-\left[\frac{1}{5}+\frac{4}{3}-4\right]\right\}=\pi\left[\frac{31}{5}+\frac{28}{3}-4\right]=\frac{293 \pi}{15}=19 \frac{8}{15} \pi \quad \text { Units }^{3}
\end{aligned}
$$

Ex 2: The container with function $y=x^{2}+2$ is rotated around the y-axis between $y=3$ and $y=6$ (Diagram on LHS). If $y=x^{2}+2$ then $x^{2}=(y-2)$ [As around \boldsymbol{y}-axis => use dy and formula with x^{2}]

$$
\begin{aligned}
& V=\int \pi x^{2} d y \\
= & \int_{3}^{6} \pi(y-2) d y=\pi\left[\frac{y^{2}}{2}-2 y\right]_{3}^{6}=\pi\left\{\left[\frac{36}{2}-12\right]-\left[\frac{9}{2}-6\right]\right\}=\pi\left[\frac{27}{2}-6\right]=\frac{15 \pi}{2} \quad \text { Units }^{3}
\end{aligned}
$$

Advanced Higher Revision Notes

Using various methods of Integration:-

2. SAME POWER (OR HIGHER) on NUMERATOR \rightarrow DIVIDE:

\[

\]

Remember a higher polynomial on the numerator => Long Division
2B. Partial Fractions:

$$
\int \frac{2 x-1}{(x+1)(x+4)} d x=\int\left(\frac{A}{(x+1)}+\frac{B}{(x+4)}\right) d x=\ldots \text { etc.. }
$$

3. Substitution

Given a polynomial 1 degree higher on numerator, check if denominator can differentiate and cancel out the numerator via substitution
$\int \frac{2 x+2}{x^{2}+2 x} d x=\int \frac{2 x+2}{u} \frac{d u}{2 x+2}=\int \frac{d u}{u}=\ln |u|+c=\ln \left|x^{2}+2 x\right|+c$

4. Integration by parts

Use if given 2 functions combined $\rightarrow \int u v^{\prime}=\left\{u v-\int u^{\prime} v\right\}$
Functions that repeat or alternate [E.g. $\left.\boldsymbol{e}^{\boldsymbol{x}}, \boldsymbol{\operatorname { c o s }} \boldsymbol{x}, \sin \boldsymbol{x}\right]$
\rightarrow set integral to $\boldsymbol{I} \&$ use 'loop'/repetition to rearrange \& solve integral.
If integrating complex functions [i.e. $\int \tan x d x, \int \ln |x| d x$ etc..]
\rightarrow Set up as integration by parts and multiply the function given by 1 .

$$
\int 1 . \tan x d x \quad \& \quad \int 1 \cdot \ln |x| d x
$$

Advanced Higher Revision Notes

5. Separation of Variables

$$
\begin{array}{ll}
\frac{d y}{d x}=(x+2)^{3} y & \text { As we have a combination of } \mathrm{x} \text { and } \mathrm{y} \\
\frac{d y}{y}=(x+2)^{3} d x & \text { variables we must separate them. } \\
\int \frac{d y}{y}=\int(x+2)^{3} d x & \text { Then integrate both sides. } \\
\ln y=\frac{(x+2)^{4}}{4}+c & \text { Only attach constant to RHS. } \\
y=e^{\left.\frac{(x+2)^{4}}{4}+c\right)} & \text { Then take exponential of each side to } \\
y=e^{\frac{(x+2)^{4}}{4}} \cdot e^{c} & \text { Finally separate using indice rules } \\
y=A e^{\frac{(x+2)^{4}}{4}}, & \text { Where } A=e^{c}
\end{array}
$$

6. Inverse Trigonometric Functions

*Remember tan is ONLY inverse function bringing fraction to FRONT Usually quite obvious when to use, as tan, cos and sine inverse functions as they have squares/square roots involved.

REMEMBER TO CHANGE INTEGRAL VALUES

$$
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \quad \int \frac{1}{\sqrt{\left(a^{2}-x^{2}\right)}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c \quad \int \frac{-1}{\sqrt{\left(a^{2}-x^{2}\right)}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c
$$

**In Trig Substitution highly likely that the denominator shall become

$$
\sqrt{\left(1-\cos ^{2} x\right)}=\sin x, \sqrt{\left(1-\sin ^{2} x\right)}=\cos x \text { or } \sqrt{\left(1+\tan ^{2} x\right)}=\sec x
$$

DON'T FORGET TO RE-ARRANGE \& REPLACE notation from say, dx, to du or d θ

 \& change DEFINITE INTEGRAL values accordingly so ENTIRE problem is in terms of new variable.
Advanced Higher Revision Notes

$4 \quad$ Functions and Curve Sketching

ONE-TO-ONE If each value in domain (input) images onto only $\mathbf{1}$ value in range
INVERSE and ONTO An INVERSE exists if the values in the range fall exactly onto one value in domain, (if co-domain is exactly same as the range \rightarrow ONTO)

If more than one value in the domain gives the same value in range [i.e. $\left.(\pm 2)^{2}=4\right]$
\rightarrow MANY-TO-ONE. \{An inverse may exist if the domain is restricted say to $x>0$ \}

Curve Sketching (ASSMTEAS)

Axes $\quad \underline{\text { Find where it cuts the axes }} \quad$| x | $=0(y$-axis) |
| :--- | :--- |
| y | $=0(x$-axis) |

Symmetry Consider Status of Function
Odd function is rotated 180° around origin

$$
\begin{gathered}
f(-x)=-f(x) \\
f(-x)=f(x) \\
f(-x) \neq f(x)
\end{gathered}
$$

Even function is reflected on y-axis $\quad \boldsymbol{f}(-\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$
If Neither exist cannot assume anything!

Stationary Points or Points of Inflexion, $f^{\prime}(x)=0$

Max/Min Remember to find y-coordinate from ORIGINAL function. Turning Pts Use nature table or f " (x) rules to find NATURE of TPts If $f^{\prime \prime}(a)>0$ It is happy \bigcup with a min turning point If " ${ }^{\prime \prime}(a)<0$ It is unhappy \bigcap with a max turning point If $f^{\prime \prime}(x)=0$ then need to use the nature table

or | \boldsymbol{x} | $\rightarrow a \rightarrow$ |
| :---: | :---: |
| $\frac{d y}{d x}$ | |
| Slope | |

Extremes of

Asymptotes [Think of when undefined and also when $x \rightarrow \pm \infty$]
Vertical Asymptote at $x \rightarrow \pm$??, then $y \rightarrow \pm \infty$ (Values which make the denominator undefined)

Non-Horizontal/Non-Vertical/Slant/Oblique at $y=? x \rightarrow \pm \infty$

- Exists when higher power on numerator \Rightarrow find via DIVIDING
- Slant Asymptote is the first section (Quotient) [i.e. line $y=a x+b]$ Then use the remainder to determine whether \pm for $x \rightarrow \pm \infty$

Sketch Annotate asymptotes, turning points, and where cuts $\boldsymbol{x} \& y$-axes *** remember by using long division at the start shall make the function far more manageable to differentiate and to determine NonVertical Asymptotes

Advanced Higher Revision Notes

5 Gaussian Elimination-3 Possible Solutions to Consider:

Work around in an ' \mathbf{L} ' shape (from $\boldsymbol{a}_{\mathbf{2 1}} \rightarrow \boldsymbol{a}_{\mathbf{3 1}}$ then to $\boldsymbol{a}_{\mathbf{3 2}}$) rearranging the system of equations into Upper Triangular form :

Type 1

$$
\left(\begin{array}{lll|l}
1 & 2 & 3 & 4 \\
0 & 5 & 6 & 7 \\
0 & 0 & 8 & 9
\end{array}\right)
$$

$O x+O y+k z=N \rightarrow$ ONLY ONE UNIQUE SOLUTION EXIST
and can therefore solve for x, y and z.
Type 2

$$
\left(\begin{array}{lll|l}
1 & 2 & 3 & 4 \\
0 & 5 & 6 & 7 \\
0 & 0 & 0 & 9
\end{array}\right)
$$

$\boldsymbol{O x}+\boldsymbol{O y}+\boldsymbol{O z}=\boldsymbol{k} \boldsymbol{\rightarrow}$ The system of equations does not make sense and is said to be INCONSISTENT \rightarrow HAS NO SOLUTIONS
Type $3 \quad\left(\begin{array}{lll|l}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 0 & 0\end{array}\right)$
$0 x+0 y+0 z=0 \Rightarrow$ REDUNDANT (this means parallel planes exist as one has eliminated the other)
REDUNDANCY \rightarrow INFINITE SOLUTIONS EXIST

ILL-CONDITIONING

A SMALL change in the matrix makes a massive difference in the final solution is called ill-conditioning.

This has rarely came up (2012 only), so potentially a favourite....
Other favourite is using the matrix to find an unknown value?

Advanced Higher Revision Notes

Differentiating Exponential Problems:
Example Differentiate the following $y=4^{\left(x^{2}+2\right)}$

1. Take ln of each side

$$
\begin{aligned}
\ln |y| & =\ln \left|4^{\left(x^{2}+2\right)}\right| \\
\ln |y| & =\left(x^{2}+2\right) \ln |4| \\
\ln |y| & =\ln |4| x^{2}+2 \ln |4| \\
1 / y \cdot d y / d x & =2 x \cdot \ln |4| \\
{ }^{d y} /{ }_{d x} & =(2 x . \ln |4|) \times y \\
d y y_{d x} & =(2 x \cdot \ln |4|) \times 4^{\left(x^{2}+2\right)}
\end{aligned}
$$

2. Rearrange to remove power issue
3. Remember $\ln |k|$ is a only a constant $\ln |\boldsymbol{y}|=\ln |4| x^{2}+2 \ln |4|$
4. Differentiate both sides
5. Need to multiply by y
6. Now express in terms of x

Inverse Functions:

$$
\frac{d}{d x}\left(\tan ^{-1}\left(\frac{x}{a}\right)\right)=\frac{a}{a^{2}+x^{2}} \quad \frac{d}{d x}\left(\sin ^{-1}\left(\frac{x}{a}\right)\right)=\frac{1}{\sqrt{\left(a^{2}-x^{2}\right)}} \quad \frac{d}{d x}\left(\cos ^{-1}\left(\frac{x}{a}\right)\right)=\frac{-1}{\sqrt{\left(a^{2}-x^{2}\right)}}
$$

$\frac{d x}{d y}=\frac{1}{\frac{d y}{d x}}$
Can invert functions in the following way also, find $f^{\prime}(x)$ and make

$$
\frac{1}{f^{\prime}(x)}
$$

Derivative of an Inverse Function:

1. DERIVATIVE of inverted function \rightarrow Change $f(x)$ to $f(y)$ and diff
2. Need to find Inverse so switch $x \leftrightarrow y$
3. Change back into terms of y
4. This is now the inverse $f^{-1}(x)$
5. Using rule ${ }^{d y} / d x={ }^{1} / f^{\prime}(y)$ write findings of $f^{\prime}(y)$ and substitute the inverse of function into derivative to represent in terms of x
Example Find the inverse derivative of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{3}}$
Inverse \rightarrow need $f^{\prime}(y)$ rather than $f^{\prime}(x) \quad f(x)=\boldsymbol{x}^{3} \boldsymbol{\rightarrow} \boldsymbol{f}(\boldsymbol{y})=\boldsymbol{y}^{\mathbf{3}}$

$$
f^{\prime}(y)=3 y^{2}
$$

Find the inverse function of $f(x)=x^{3}$

$$
\text { i.e. } \begin{aligned}
y & =x^{3} \\
x & =y^{3} \\
x^{1 / 3} & =y \\
\Rightarrow f^{-1}(x) & =x^{1 / 3}=f(y)
\end{aligned}
$$

Inverse derivative:

$$
\frac{d y}{d x}=\frac{1}{f^{\prime}(y)}=\frac{1}{3 y^{2}}=\frac{1}{3\left(x^{1 / 3}\right)^{2}}=\frac{1}{3 x^{2 / 3}}
$$

Advanced Higher Revision Notes

Complex Numbers

$$
i=\sqrt{ }-1 \rightarrow i^{2}=-1
$$

Cartesian Format,
(Use to plot values)

Argand Diagram (a, b)

$$
z=a+i b
$$

Im (Imaginary Axis 'b')

Use Argand Diagram to find the Modulus $|r|$ \& Argument arg(θ)

The distance from the origin to (a, b) is called
the modulus of z ,

$$
|z|=\sqrt{\left(a^{2}+b^{2}\right)}
$$

Note that the i is ignored and the modulus is usually referred to as r :

$$
r=\sqrt{\left(a^{2}+b^{2}\right)}
$$

The argument is represented by:

$$
\arg (z)=\theta=\tan ^{-1}\left|\frac{b}{a}\right|
$$

Together the modulus \& argument can then represent the complex number z in Polar form rather than Cartesian ($z=a+i b$)
[Note it is easier to apply calculations with the Polar form.]

Polar form

$$
\begin{aligned}
& a=r \cos \theta \text { and } b=r \sin \theta \\
& z=r(\cos \theta+i \sin \theta)
\end{aligned}
$$

Advanced Higher Revision Notes

Complex Numbers : To find ARGUMENT

Find $1^{\text {st }}$ Quadrant (Principle argument) then find $\left.\boldsymbol{\operatorname { a r g }} \boldsymbol{\theta} \boldsymbol{\theta}\right)$, using Argand diagram quadrant rules
The argument $\boldsymbol{\theta}$ of the complex number can be found by plotting the Cartesian Coordinate to decide which Quadrant the principle angle θ lies in.

The Principle Argument must lie between $-\pi \leq \theta \leq \pi$.

- Find the $1^{\text {st }}$ Quadrant angle, say $\boldsymbol{\alpha}$, using $\boldsymbol{\operatorname { t a n }}^{-1}|\boldsymbol{b} / \mathbf{a}|=\boldsymbol{\alpha}$
- Plot the Argand diagram to decide which Quadrant $(\boldsymbol{a}, \boldsymbol{b})$ is in.
- Use the Quadrant rules to find the value of $\arg (\boldsymbol{\theta})$

Complex Geometric Interpretations (Locus of a Point)

To find the locus of a point is similar to interpreting the centre \& radius of a circle. The inequality used with the complex number applies to whether it is on the circumference $(|z|=\boldsymbol{r})$; inside $(|z|<\boldsymbol{r})$ or outside $(|z|>\boldsymbol{r})$ the circle.

To obtain a solution in terms of $\boldsymbol{x} \boldsymbol{\&} \boldsymbol{y}$ represent the complex number as $\boldsymbol{z}=\boldsymbol{x}+\boldsymbol{i} \boldsymbol{y}$
We can combine the facts that $|z|=|x+i y|$ and $|z|=|r|=\sqrt{ }\left(x^{2}+y^{2}\right)$
Thus using these properties: $|\boldsymbol{z}-\boldsymbol{a}-\boldsymbol{i} \boldsymbol{b}|=\boldsymbol{r} \boldsymbol{\rightarrow}$ Centre $(\boldsymbol{a}, \boldsymbol{b}) \boldsymbol{\&}$ radius, \boldsymbol{r}
Example 1: Find the equation of the loci for $|\mathbf{z}-\mathbf{2}+\mathbf{3 i}|=7$

$$
\overline{\text { Let } z=(x+i y)}
$$

$$
7 \begin{aligned}
7 \mathbf{z}-\mathbf{2}+\mathbf{3 i} \mid & =\mathbf{7} \\
|(\boldsymbol{x}+\boldsymbol{i} \boldsymbol{y})-2+3 \mathrm{i}| & =7 \\
|(\boldsymbol{x}-2)+\boldsymbol{i}(\boldsymbol{y}+3)| & =7 \\
\sqrt{\left[(\boldsymbol{x}-2)^{2}+(y+3)^{2}\right]}= & =7 \\
(\boldsymbol{x}-2)^{2}+(y+3)^{2} & =49
\end{aligned}
$$

Collecting real and imaginary
Remember to drop ' \boldsymbol{i} ' when finding modulus
Square both sides to find equation of circle
\Rightarrow Circle Centre (2, -3) with radius 7, \& sketch on Argand diagram
Indicate on an Argand diagram the locus which satisfy $|\mathrm{z}-2|=|\mathrm{z}+3 \mathrm{i}|$
[$\boldsymbol{\rightarrow}$ Let $\boldsymbol{z}=(\boldsymbol{x}+\boldsymbol{i y})$ as must represent in terms of $\boldsymbol{x} \boldsymbol{\&} \boldsymbol{y}$]

Advanced Higher Revision Notes

Complex Numbers

Solving a Cubic problem

- Find first solution by Inspection/Synthetic Division ie. $(\boldsymbol{x}-\boldsymbol{a})=\mathbf{0}$
- Take this factor and use long division to obtain a Quadratic remainder
- Factorise or use Quadratic Formula to obtain the final two solutions

Solving a Quartic problem (below is a prelim solution from 2008/9 to see process)

- Given the first solution, say $\boldsymbol{x}=(\boldsymbol{a}+\boldsymbol{i b})$ By the fundamental theorem of algebra every quartic has 4 solutions and every complex number has a conjugate pair. Thus find the conjugate pair $x=a-i b$
- Rearrange both solutions into factors and multiply to obtain a quadratic

$$
(x-a-i b)(x-a+i b) \quad[U s e ~ a ~ m u l t i p l i c a t i o n ~ g r i d ~ f o r ~ e a s e] ~] ~
$$

- Use this new quadratic expression \& divide to obtain a quadratic remainder
- Factorise or use Quadratic Formula to obtain the final two solutions.

Given $z=(2+i)$ is a root of $z^{4}-4 z^{3}+6 z^{2}-4 z+5$, find all the roots?
AH 200819 Prelui (Unit 1/2)

Q5. $z=(2 t i) \Rightarrow \underbrace{\bar{z}=(2-i)}_{0}\left\{\begin{array}{l}\text { By the fundamental theorem } \\ \text { of algebra a COnjuGATE PAin } \\ \text { exisis }\end{array}\right.$

* Using 2 solutions $z_{1}=(2+i) \not \& \quad z_{2}=(2-i)$
* Can then find 2 factors of Quartic: $(z,-2-i)=0 \neq\left(z_{2}-2+i\right)=0$

$(z-2-i)(z-2+i)=z^{2}-4 z+4-i^{2}$

4 Solutions for $z^{4}-4 z^{3}+6 z^{2}-4 z+5$

$$
z^{2}-4 z+5 \begin{aligned}
& z^{2}+1 \\
& \begin{array}{l}
z^{4}-4 z^{3}+6 z^{2}-4 z+5 \\
\frac{z^{4}-4 z^{3}+5 z^{2}}{}
\end{array} \\
& \hline 2 \text { Sowhions for } z^{4}-4 z^{3}+6 z^{2}-4 z+5=0 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
z^{2}-4 z+5 \\
z^{2}-4 z+5
\end{aligned} \quad \therefore z^{2}+1=0, ~=z^{2}=-1
$$

$z^{2}=i^{2}$
$z= \pm i$
$\therefore 4$ Solutions are:

Advanced Higher Revision Notes

De Moivre's Theorem

$$
\begin{aligned}
& z^{n}=[r(\cos \theta+i \sin \theta)]^{n} \\
& z^{n}=r^{n}(\cos (n \theta)+i \sin (n \theta))
\end{aligned}
$$

Given $z=(\cos \theta+i \sin \theta) \quad \& \quad w=(\cos \psi+i \sin \psi)$
$z w=(\cos (\boldsymbol{\theta}+\boldsymbol{\psi})+i \sin (\boldsymbol{\theta}+\boldsymbol{\psi})) \quad \& \quad z / w=(\cos (\boldsymbol{\theta}-\boldsymbol{\psi})+i \sin (\boldsymbol{\theta}-\boldsymbol{\psi}))$

Using Binomial Expansion \& De Moivre's to express in terms of Cos or Sin

- Apply from Cartesian to Polar format of Complex number
- Rearrange to De Moivre's Theorem so expression is as a 'power'
- Expand using Binomial Expansion, take care with i.
- If asks for Cos \rightarrow use the real values only
- If asks for Sin \rightarrow use the imaginary values only, DO NOT include i
- Rearrange final expression to required status

*** VERY POPULAR EXAM STYLE QUESTION

nth Roots of a Complex Number

- Write down the complex number in polar form $z=r(\cos \theta+i \sin \theta)$
- For each other additional root add 2π to the angle each stage
- Eg for cube root we would find the polar format for the first root as

$$
\begin{array}{ll}
1^{\text {st }} \text { Root } & z=r[\cos \theta+i \sin \theta] \\
2^{\text {nd }} \text { Root } & z=r[\cos (\theta+2 \pi)+i \sin (\theta+2 \pi)] \\
3^{\text {rd }} \text { Root } & z=r[\cos (\theta+4 \pi)+i \sin (\theta+4 \pi)]
\end{array}
$$

- Write down the cube roots of z by taking the cube root of r \& dividing each of the arguments by 3

$$
\begin{array}{ll}
1^{\text {st }} \text { Root } & z_{1}=r^{1 / 3}\left[\cos \left(\theta^{\theta} / 3\right)+i \sin (\theta / 3)\right] \\
2^{\text {nd }} \text { Root } & z_{2}=r^{1 / /}\left[\cos \left({ }^{(\theta+2 \pi)} / 3\right)+i \sin \left({ }^{(\theta+2 \pi)} / 3\right)\right] \\
3^{\text {rd }} \text { Root } & \left.z_{3}=r^{1 / 3}\left[\cos \left({ }^{(\theta+4 \pi)} / 3\right)+i \sin \left({ }^{(\theta+4 \pi)} / 3\right)\right)\right]
\end{array}
$$

Advanced Higher Revision Notes

$$
\begin{gathered}
n^{\text {th }} \text { Roots of Unity : } \quad z^{n}=1 \\
\text { E. } g \text { Solve for } z^{n}=1 \quad \text { OR } \quad z^{n}-1=0
\end{gathered}
$$

Since NO Imaginary Values \& Real $=1 \Rightarrow \theta=2 \pi$ Thus

$$
z^{n}=[\cos (2 \pi)+i \sin (2 \pi)]^{n}=1
$$

It follows that $\cos \left({ }^{2 \pi} / n\right)+i \sin (2 \pi / n)$ is an $n^{\text {th }}$ root of unity
As every 2π will therefore result in a root of unity:
$1=\cos \left({ }^{2 \pi} / n\right)+i \sin \left({ }^{2 \pi} / n\right)$
$1=\cos (4 \pi / n)+i \sin (4 \pi / n)$
$1=\cos \left({ }^{6 \pi / n}\right)+i \sin \left({ }^{6 \pi} / n\right)$
$1=\cos \left({ }^{8 \pi} / n\right)+i \sin \left({ }^{8 \pi} / n\right) \ldots \cos (2 n \pi)+i \sin (2 n \pi)=1$

Example: Find the roots when $z^{4}=1 \rightarrow$ expect 4 roots

$$
\begin{aligned}
z^{4} & =(\cos (2 \pi)+i \sin (2 \pi))^{4} \\
1^{s t} \operatorname{root}, z_{1} & =[\cos (2 \pi)+i \sin (2 \pi)]^{1 / 4} \\
2^{\text {nd }} \operatorname{root}, z_{2} & =[\cos (2 \pi+2 \pi)+i \sin (2 \pi+2 \pi)]^{1 / 4} \\
3^{\text {rd }} \text { root, } z_{3} & =[\cos (2 \pi+4 \pi)+i \sin (2 \pi+4 \pi)]^{1 / 4} \\
4^{\text {th }} \text { root, } z_{4} & =[\cos (2 \pi+6 \pi)+i \sin (2 \pi+6 \pi)]^{1 / 4}
\end{aligned}
$$

4 roots are therefore:

$$
\begin{aligned}
& \left.z_{1}=\cos (2 \pi / 4)+i \sin (2 \pi / 4)=\cos (\pi / 2)+i \sin (\pi / 2)\right)=0+i=i \\
& z_{2}=\cos (4 \pi / 4)+i \sin (4 \pi / 4)=\cos (\pi)+i \sin (\pi)=-1+0 i=-1 \\
& z_{3}=\cos (6 \pi / 4)+i \sin (6 \pi / 4)=\cos (3 \pi / 2)+i \sin (3 \pi / 2)=0-i=-i \\
& z_{4}=\cos (8 \pi / 4)+i \sin (8 \pi / 4)=\cos (2 \pi)+i \sin (2 \pi)=1+0 i=1
\end{aligned}
$$

\& can be sketched on an Argand diagram (4 roots connected would make a square)

Advanced Higher Revision Notes

Further Sequence and Series

Arithmetic Sequences

$u_{n}=a+(n-1) d$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Geometric Sequences

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

$S_{\infty}=\frac{a}{1-r}$

MacLaurins (Power) Series
$f(x)=f(0)+f^{\prime}(0) \frac{x^{1}}{1!}+f^{\prime \prime}(0) \frac{x^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+f^{i v}(0) \frac{x^{4}}{4!}+. .+f^{n}(0) \frac{x^{n}}{n!}$

Iterative Processes

For iterative processes set $\quad x_{n+1}=g\left(x_{n}\right)$
If asked to show root by sketch split function into 2 easier equations and find intersection, here the value of x will give a good indication of the root you are trying to find.
Eg $x^{2}-2 x+7=0$ can be split into $y=x^{2} \& y=2 x-7$
Algebraically we can determine the function will tend to a given root by finding $\mathrm{g}^{\prime}(\mathrm{x})$ \& substitute the root, say $\mathrm{x}=\alpha$ into $\mathrm{g}^{\prime}(\mathrm{x})$ i.e. $\mathrm{g}^{\prime}(\alpha)$.

$$
|I f| g^{\prime}(\alpha) \mid<1
$$

Then our value will CONVERGE to the specified root.

$$
\text { If }\left|g^{\prime}(\alpha)\right| \geq 1
$$

Then our value DIVERGES and we must try a different rearrangement of the function for convergence to occur.

The ORDER of the Sequence/function can be determined by $\mathrm{g}^{\prime}(\alpha)$ $\mathrm{g}^{\prime}(\alpha) \neq 0 \Rightarrow$ The function is FIRST ORDER

$$
\Rightarrow u_{n+1}=a u_{n}+b
$$

$\mathrm{g}^{\prime}(\alpha)=0 \Rightarrow$ The function is SECOND ORDER

$$
\Rightarrow u_{n+1}=a u_{n+1}+b u_{n}+c
$$

Advanced Higher Revision Notes

Number Proof Theory
Main types of proof involve:

- Proof by Counter-Example (Substitute values in to prove if true. Especially consider negatives and fractions to disprove)
- Proof by Exhaustion (Subtitute EVERY value in range to solve)
- Proof by Induction $* * * * * * * * * *$ The hot favourite!!!
- Proof by Contradiction (Especially square root \& Odd/Even questions)

Advanced Higher Revision Notes

Proof by Induction (basic):-

- Let $\boldsymbol{n}=\mathbf{1}$ and prove true for this case
- Assume true for $\boldsymbol{n}=\boldsymbol{k}$ \& substitute \boldsymbol{k} in as required
- Consider $n=k+1$
- Extend proof for $\boldsymbol{n}=\boldsymbol{k}$ by adding extra term $\boldsymbol{n}=\boldsymbol{k}+\boldsymbol{1}$ to either side \& rearrange to obtain original format
- Statement:

As true for $n=1$, assumed true for $n=k$ and by proof by induction also true for $n=k+1$, assume true for $\forall n \in N$ \{or for whichever set stated, could be $\boldsymbol{n} \in \boldsymbol{Z}^{+}, \boldsymbol{n} \geq \boldsymbol{0}$ etc.. \}

Proof by Induction Example:

$$
\begin{align*}
& \text { Qt. } \sum_{r=1}^{n} \frac{\frac{A 1+2008(9}{3} \text { Mini }}{\frac{1}{(3 r-1)(3 r+2)}}=\frac{1}{2}-\frac{1}{3 n+2} \tag{5}\\
& \text { Let } n=1 \text { fits }=\frac{3}{(3-1)(3+2)}=\frac{3}{2 \times 5}=\frac{3}{10} \\
& \text { RmS }=\frac{1}{2}-\frac{1}{(3+2)}=\frac{1}{2}-\frac{1}{5}=\frac{5-2}{10}=\frac{3}{10} \\
& \text { HS }=\text { RUS } \checkmark \text { true for } n=1 \quad \text { o } \\
& \text { Assume tire } \text { for } n=k \\
& \sum_{r=1}^{n=k} \frac{3}{(3 r-1)(3 r+2)}=\frac{1}{2}-\frac{1}{3 k+2} \\
& \text { Consider } n=k+1 \\
& \sum_{r=1}^{n=k} \frac{3}{(3 r-1)(3(+2)}+\frac{3}{(3(k+1)-1)(3(k+1)+2)}=\left(\frac{1}{2}-\frac{1}{3 k+2}\right)+\frac{3}{(3(k+1)-1)(3(k+1)+2)} \\
& =\left(\frac{1}{2}-\frac{1}{3 k+2}\right)+\frac{3}{(3 k+3-1) / 3 k+3+2)} \\
& =\frac{1}{2}-\frac{1}{3 k+2}+\frac{3}{(3 k+2)(3 k+5)} \\
& =\frac{1}{2}+\frac{3}{(3 k+2)(3 k+5)}-\frac{1 \cdot(3 k+5)}{(3 k+2)(3 k+5)} \\
& =\frac{1}{2}+\frac{3-3 k-5}{(3 k+2)(3 k+5)} \\
& =\frac{1}{2}+\frac{-3 k-2}{(3 k+2)(3 k+5)} \\
& =\frac{1}{2}+\frac{-(3 k+2)}{(3 k+2)(3 k+5)} \\
& =\frac{1}{2}-\left(\frac{1}{3 k+5}\right) \\
& =\frac{1}{2}-\frac{1}{3(k+1)+2} \text { as requever } \\
& \text { As sure for } n=1 \text {, } n=k \text { and by proof of mathencoitical Indechion } \\
& \text { ats tore for } n=k+1 \text {, conjechere is the } \forall n \in N \text {. © }
\end{align*}
$$

Advanced Higher Revision Notes

*Harder Proof by Induction (Powers): $\mathbf{8}^{\mathbf{n}} \mathbf{- 1}$ is divisible by 7

Statement: As true for $n=1$, assumed true for $n=k$ and by proof by induction also true for $n=k+1$, assume true for $\forall n \in N$

Alternatively if pretty tricky then can rearrange assumption for $\boldsymbol{n}=\boldsymbol{k}$ and substitute into problem when considering $\boldsymbol{n}=\boldsymbol{k}+\boldsymbol{1}$

$$
\begin{aligned}
& \text { Let } n=1 \text { : } \\
& 8^{1}-1=7=7 \times 1 \rightarrow \text { divisible by } 7 \underline{\text { so true for } n=1 \checkmark} \\
& \text { Assume true for } n=k \text { : } \\
& \text { Consider } n=k+1: \quad 8^{\mathrm{k}+1}-1=\mathbf{8}^{\mathrm{k}} . \mathbf{8}^{1}-\mathbf{1} \text { (where } m \text { is a positive integer) } \\
& \text { (if } \mathbf{8}^{\mathrm{k}}-1=7 m \text {) } \\
& =(7 m+1) \cdot \mathbf{8}^{1}-1 \\
& \left(\text { Then } \mathbf{8}^{\mathbf{k}}=(7 m+1)\right. \text {) } \\
& =8(7 m+1)-1 \\
& \text { (use this to replace } \mathbf{8}^{\mathbf{k}} \text {) } \\
& =56 m+8-1 \\
& \text { (Simplify expression) } \\
& \text { (can now show have multiple of 7) } \\
& =56 m+7 \\
& =7(8 m+1) \quad \text { Let }(8 m+1)=N \text { to simplify } \\
& =7 N \quad \text { final expression (not nec, but nice) }
\end{aligned}
$$

Statement: As true for $n=1$, assumed true for $n=k$ and by proof by induction also true for $n=k+1$, assume true for $\forall n \in N$

Induction \& Inequalities

- Use similar steps
- Will find it tricky to rearrange to final answer as inequality
- So leave some space
- As you know what the final answer with $\boldsymbol{n}=\boldsymbol{k}+\boldsymbol{1}$ looks like
- Write this expression below your given space
- Then consider what has happened in space between this
- As you must justify the inequality.

Advanced Higher Revision Notes

Proof by Contradiction:

- Assume their conjecture is false
- Assume you are true with a contradicting statement
- Try to prove, but you will have an error \rightarrow CONTRADICTION!!
- Hence initial conjecture is true!!
' $\sqrt{ } 2$ is not a rational number.' Prove this conjecture.
Assume statement is false:
Assume that $\sqrt{ } 2$ is rational.

Try to prove
Therefore let $\sqrt{2}=\mathrm{p} / \mathrm{q}$
where p and q are
no common factors.

Squaring both sides gives

$$
2=p^{2} / q^{2}
$$

Now if p is odd, then p^{2} is odd.

$$
2 q^{2}=p^{2} \Rightarrow p^{2} \text { is even. }
$$

But p^{2} is even
As p is even, let $p=2 m$ for some integer m

$$
\begin{aligned}
& \mathrm{p}^{2}=(2 \mathrm{~m})^{2} \\
& \mathrm{p}^{2}=4 \mathrm{~m}^{2}=2 \mathrm{q}^{2}
\end{aligned}
$$

So if $2 q^{2}=4 m^{2}$
then $\begin{aligned} q^{2}=2 m^{2} & \Rightarrow q^{2} \text { is even } \\ & \Rightarrow q \text { is even }\end{aligned}$
Find flaw
Initially we said p \& q had no common factors \& were irreducible. However here p \& q are both even and
Statement have a common factor of 2. CONTRADICTION!
Thus by proof of contradiction $\sqrt{ } 2$ must be irrational.

Advanced Higher Revision Notes

Euclidean Algorithm

The Greatest Common Divisor (gcd) [or highest common factor]
$78=1.42+36$

$36=6 . \underline{6}+0 \quad$ Therefore the $\mathbf{g c d}(\mathbf{4 2}, \mathbf{7 8})=\mathbf{6}$

Obtain values of x \& y using Euclidean Algorithm:

E.g. Find the values of x \& y which satisfy the following Euclidean Algorithm

$$
\operatorname{gcd}(2695,1260)=2695 x+1260 y
$$

- First find the gcd

$$
\begin{array}{rlr}
2695 & =\mathbf{2 . 1 2 6 0}+\mathbf{1 7 5} \\
1260 & =\mathbf{7 . 1 7 5}+\mathbf{3 5} \quad \\
175 & =\mathbf{5 . 3 5}+\mathbf{0} \quad \text { Therefore the } \operatorname{gcd}(\mathbf{2 6 9 5}, \mathbf{1 2 6 0})=\mathbf{3 5}
\end{array}
$$

- Now starting at the second last line work backwards:-

Then from line 2 if: $\quad 1260=7.175+35$
Then

$$
\begin{aligned}
35 & =1260-7.175 \\
& =1260-7 .(2695-2.1260) \\
& =1260-7.2695+14.1260 \\
\Rightarrow 35 & =-\mathbf{- 7 . 2 6 9 5 + 1 5 . 1 2 6 0}
\end{aligned}
$$

Thus $\operatorname{gcd}(2695,1260)=2695 x+1260 y \& \operatorname{gcd}(2695,1260)=35$

$$
\begin{gathered}
\Rightarrow 2695 x+1260 y=35 \\
\text { and } \quad-7.2695+15.1260=35=>\underline{x=-7 \& y=15}
\end{gathered}
$$

Diophantine (if equation looks similar but RHS has changed)
From above 2695x $+1260 y=35 \quad$ has solutions $x=-7 \quad \& \quad y=15$ If $\mathbf{2 6 9 5 x}+\mathbf{1 2 6 0 y}=105 \rightarrow$ Original solutions $\underline{\mathbf{x} 3} \rightarrow x=-21 \& y=45$

Advanced Higher Revision Notes

11 Vectors

$$
\begin{array}{|l|}
\hline \underline{\text { Length of a vector }} \\
\underline{p}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
\hline
\end{array}
$$

Component form of a vector

$$
a \underline{i}+b \underline{j}+c \underline{k}
$$

Direction Ratios \& Cosine Ratios
Let $\underline{p}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=a \underline{i}+b \underline{j}+c \underline{k}$
The vector p makes an angle of α with the x -axis, an angle of β with the y -axis and an angle of γ with the z -axis.

Thus,
$\cos \alpha=\frac{a}{|\underline{p}|} \quad ; \cos \beta=\frac{b}{|\underline{p}|} \quad ; \cos \gamma=\frac{c}{|\underline{p}|}$

THE DIRECTION COSINES are the values:

$$
\frac{a}{|\underline{p}|} ; \frac{b}{|\underline{p}|} \text { and } \frac{c}{|\underline{p}|}
$$

The DIRECTION RATIOS are the ratios of $\mathrm{a}: \mathrm{b}: \mathrm{c}$

Advanced Higher Revision Notes

The Scalar Product
Let $\underline{p}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right) ; \underline{q}=\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ Then $\underline{p} \bullet \underline{q}=\mathrm{ad}+\mathrm{be}+\mathrm{cf}$

Scalar Product Properties

Property 1	\rightarrow	$a \cdot(b+c)=a \cdot b+a . c$
Property 2	\rightarrow	$a . b=b . a$
Property 3	\rightarrow	$\boldsymbol{a} . \boldsymbol{a}=\|\boldsymbol{a}\|^{2} \geq 0$
Property 4	\rightarrow	$a \cdot a=0$ if and only if (iff) $a=0$
Property 5	\rightarrow	For non-zero vectors, \boldsymbol{a} and \boldsymbol{b} are perpendicular iff $\boldsymbol{a} \cdot \boldsymbol{b}=\mathbf{0}$

In geometric form, the scalar product of two vectors \boldsymbol{a} and \boldsymbol{b} is defined as $\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \boldsymbol{\theta}$ where $\boldsymbol{\theta}$ is the angle between \boldsymbol{a} and $\boldsymbol{b}, \boldsymbol{0} \leq \boldsymbol{\theta} \leq 180^{\circ}$

Vector Product Properties

Property $1 \rightarrow$
$a \times(b+c)=a \times b+a \times c$
Property $2 \rightarrow$
$a \times b=-b \times a($ i.e. $A B=-B A)$
Property $3 \rightarrow$
$\boldsymbol{a} \times \boldsymbol{a}=|\boldsymbol{a}|^{2} \geq 0$
Property $4 \rightarrow \quad a \times(b \times c) \neq(a \times b) \times c$
Property $5 \quad \rightarrow \quad$ If $a .(a \times b)=0$ and $b .(a \times b)=0$

The vector $\boldsymbol{a} \times \boldsymbol{b}$ is perpendicular to both $\boldsymbol{a} \& \boldsymbol{b}$
The Vector product in geometric form of \boldsymbol{a} and \boldsymbol{b} is defined with
Magnitude of $|\boldsymbol{a} \times \boldsymbol{x}|=|\boldsymbol{a}||\boldsymbol{b}| \sin \boldsymbol{\theta}$ where $\boldsymbol{\theta}$ is the angle between \boldsymbol{a} and $\mathrm{b}, 0 \leq \boldsymbol{\theta} \leq 180^{\circ}$

Direction perpendicular to both \boldsymbol{a} and \boldsymbol{b} as determined by the Right Hand Rule.

Advanced Higher Revision Notes

Vector form of the equation of a line

$$
\underline{r}=\underline{a}+\lambda \underline{d}
$$

where $\underline{a}=\overrightarrow{O P}, \underline{d}$ is a vector parallel to the required line and λ is a real number.
i.e. the vector equation is $\underline{\mathrm{r}}=\left(\underline{a}_{i}+\underline{a}_{j}+\underline{a}_{k}\right)+\lambda\left(\underline{d}_{i}+\underline{d}_{j}+\underline{d}_{k}\right)$

Parametric form of the equation of a line

The parametric equations of a line through the point $P=\left(a_{1}, \quad a_{2}, \quad a_{3}\right)$ with direction $\underline{d}=d_{1} i+d_{2} j+d_{3} k$ are
$x=a_{1}+\lambda d_{1}, \quad y=a_{2}+\lambda d_{2}, \quad z=a_{3}+\lambda d_{3}$ where λ is a real number.

Symmetric form of the equation of a line
If $x=a_{1}+\lambda d_{1}, \quad y=a_{2}+\lambda d_{2}, \quad z=a_{3}+\lambda d_{3}$
are parametric equations of a line,
the symmetric equation of the line is:
$\frac{x-a_{1}}{d_{1}}=\lambda, \quad \frac{y-a_{2}}{d_{2}}=\lambda, \quad \frac{z-a_{3}}{d_{3}}=\lambda$
These symmetric equations are also known as the CARTESIAN EQUATIONS OF A LINE.

- Note that if any of the denominators are zero then the corresponding numerator is also zero.
This means the vector is PARALLEL to an axis.
- Note that if a deno min ator is 1 , the form of equations requires that it should be left there.
- If 2 lines are parallel their direction ratios are proportional

Advanced Higher Revision Notes

Vector form of the equation of a line

If you are given the position vector, $\underline{\boldsymbol{a}}$ \& the direction, $\underline{\boldsymbol{d}} \boldsymbol{\rightarrow} \boldsymbol{r}=\boldsymbol{a}+\boldsymbol{\lambda} \boldsymbol{d}$
If you are NOT told the direction, but are given 2 points e.g. $\mathrm{A}(1,2,3)$ \& $\mathrm{B}(4,5,6)$, find the direction by finding the directed line segment $\overrightarrow{\mathbf{A B}}$:

$$
\begin{aligned}
& \mathrm{A}=(1,-2,3) \quad \& \quad \mathrm{~B}(4,5,-7) \\
& \overrightarrow{A B}=\underline{b}-\underline{a}=\left(\begin{array}{l}
4 \\
5 \\
-7
\end{array}\right)-\left(\begin{array}{l}
1 \\
-2 \\
3
\end{array}\right)=\left(\begin{array}{l}
3 \\
7 \\
-10
\end{array}\right)=\underline{d}
\end{aligned}
$$

Vector Equation of line
$r=\underline{a}+\lambda \underline{d}$
$\underline{r}=(i-2 j+3 k)+\lambda(3 i+7 j-10 k)$

Parametric form of the equation of a line
$x=1+3 \lambda, \quad y=-2+7 \lambda, \quad z=3-10 \lambda$

Symmetric form of the equation of a line
If $\lambda=\frac{x-1}{3} \quad=\frac{y+2}{7} \quad=\frac{z-3}{-10}$

Advanced Higher Revision Notes

Point of Intersection between 2 lines

- Lines must be in parametric form first ($x=a+\lambda d$, etc)
- Use λ for L_{1} \& μ for L_{2}
- Set your x, y and z parametrics equal to each other
- Use simplest equation \& rearrange so $\lambda=$ to form of μ
- Then use with other equations to solve for $\lambda \& \mu$
- If when replacing these into initial parametrics both lines have exactly the same values for x, y \& z then the lines intersect at this point, otherwise they don't intersect (see example)
$\underline{E x}$: Find the point of intersection between the two lines.

$$
\begin{aligned}
& L_{1}: \frac{x-2}{1}=\frac{y+2}{3}=\frac{z+1}{5} \\
& L_{1}: x=2+\lambda ; y=-2+3 \lambda ; z=-1+5 \lambda \\
& L_{2}: x=1+\mu ; y=-1+\mu ; z=2+\mu \\
& x \Rightarrow 2+\lambda=1+\mu \\
& y \Rightarrow-2+3 \lambda=-1+\mu \\
& z \Rightarrow-1+5 \lambda=2+\mu
\end{aligned}
$$

Taking the parametrics for x we have

$$
\begin{aligned}
2+\lambda & =1+\mu \\
\lambda & =-1+\mu
\end{aligned}
$$

Taking the parametrics for $y \&$ substituting for λ :

$$
\begin{aligned}
-2+3 \lambda & =-1+\mu \\
-2+3(-1+\mu) & =-1+\mu \\
-2-3+3 \mu & =-1+\mu \\
2 \mu & =4 \\
\underline{\mu} & =2
\end{aligned}
$$

We can now equate these values by substitution

$$
\begin{array}{ll}
\mu=2 \quad \& \quad \lambda=-1+\mu \Rightarrow \lambda=-1+2 \\
& \underline{\underline{\lambda=1}} \\
& \\
\mu=2 \quad \& \quad \lambda=1: & x \Rightarrow 1+\mu=1+2=3 \\
x \Rightarrow 2+\lambda=2+1=3 & y \Rightarrow-1+\mu=-1+2=1 \\
y \Rightarrow-2+3 \lambda=-2+3=1 & y \Rightarrow 2+\mu=2+2=4
\end{array}
$$

As both lines result in same values the point of intersection is therefore $(3,1,4)$

Advanced Higher Revision Notes

Angle between 2 lines

If we have the symmetric form we may obtain both directions and find the angle between the 2 lines using:

$$
\operatorname{Cos} \theta=\frac{d_{1}}{\left|\underline{d_{1}}\right| \underline{d_{2}}} \underline{\underline{d_{2}} \mid}
$$

Equation of a plane

$$
\underline{r} \cdot \underline{n}=\underline{a} \cdot \underline{n}
$$

$\underline{\boldsymbol{n}}$ is the normal (perpendicular) to plane, \boldsymbol{a} is position vector
Ex: Find the Vector Equation of a Plane throug (-1, 2, 1) with normal $\underline{n}=\underline{i}-\underline{3} \dot{j}+\underline{2 k}$
\(\underline{r \cdot n=\boldsymbol{a} \cdot \boldsymbol{n} \boldsymbol{n} \rightarrow\left($$
\begin{array}{c}-1 \\
2 \\
1\end{array}
$$\right) ; n=\left(\begin{array}{c}1

-3

2\end{array}\right)}\)\begin{tabular}{l}
Then $\underline{r} \bullet\left(\begin{array}{c}1 \\
-3 \\
2\end{array}\right)=\left(\begin{array}{c}-1 \\
2 \\
1\end{array}\right) \bullet\left(\begin{array}{c}1 \\
-3 \\
2\end{array}\right)=-1-6+2=-5$

$\Rightarrow \quad \underline{r} \bullet(i-3 j+2 k)=-5$

The Cartesian Equation is similar except
$x, y \& z$ are used and the normal is represented
$b y$ the values in front of $x, y \& z$
$\Rightarrow \quad x-3 y+2 z=-5$

\end{tabular}

Advanced Higher Revision Notes

Using 3 points to find the Equation of a Plane

If the normal is NOT given we must find it by using the vector product.
E.g. Find Cartesian equation of a plane given the points
$\mathrm{A}(1,2,1) ; \mathrm{B}(-1,0,3) \& \mathrm{C}(0,5,-1)$
Let $\underline{a}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right) ; \underline{b}=\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right) ; \underline{c}=\left(\begin{array}{c}0 \\ 5 \\ -1\end{array}\right)$
$\overrightarrow{A B}=b-a=\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{c}-2 \\ -2 \\ 2\end{array}\right)$
$\overrightarrow{A C}=c-a=\left(\begin{array}{c}0 \\ 5 \\ -1\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right)$
Then $\overrightarrow{A B} \times \overrightarrow{A C}=\left(\begin{array}{ccc}i & j & k \\ -2 & -2 & 2 \\ -1 & 3 & -2\end{array}\right)=(4-6) i-(4-(-2)) j+(-6-2) k$
$\Rightarrow \overrightarrow{A B} \times \overrightarrow{A C}=-2 \underline{i}-6 \underline{j}-8 \underline{k}$
$\Rightarrow \underline{n}=\underline{i}+3 \underline{j}+4 \underline{k}$ as normal is represented as a multiple of this
Then $\quad r . n=a . n \Rightarrow r \bullet\left(\begin{array}{l}1 \\ 3 \\ 4\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right) \bullet\left(\begin{array}{l}1 \\ 3 \\ 4\end{array}\right)=1+6+4=11$
$\Rightarrow \quad \underline{r} \bullet(i+3 j+4 k)=11$

The Cartesian Equation $\Rightarrow x+3 y+4 z=11$

Advanced Higher Revision Notes

Vectors: Plane \& Planes

The angle between 2 planes can be found by first finding both normals:

Eg	$P_{1}: \quad 2 x+3 y-5 z=1 \quad \boldsymbol{\rightarrow} \quad \underline{\boldsymbol{n}}=(2,3,-5)$			
	$P_{2}:$	$3 x-4 y+7 z=2$	$\boldsymbol{\rightarrow}$	$\underline{\boldsymbol{m}}=(3,-4,7)$

Angle between 2 planes: $\quad \operatorname{Cos} \theta=\frac{n . m}{\underline{n}| | \underline{m} \mid}$

Intersection of 3 planes: Gaussian Elimination/Algebraic Manipulation

Easiest method is to use algebraic manipulation
E.g. Given 2 planes $\mathbf{x}+\boldsymbol{y}-2 \boldsymbol{z}=\mathbf{3}$ and $\boldsymbol{x}+\boldsymbol{y}-\boldsymbol{z}=1$, find the line of intersection if it exists.

$$
\begin{array}{rr}
P_{1}: & 4 x+y-2 z=3 \\
P_{2}: & x+y-z=1 \\
\hline \boldsymbol{P}_{1}-P_{2}: \quad 3 x-z=2
\end{array}
$$

$$
P_{I}: \quad 4 x+y-2 z=3
$$

$$
\frac{2 P_{2}: \quad 2 x+2 y-2 z=2}{P_{1}-2 P_{2}: 2 x-y=1}
$$

Represent x in terms of y, and separately in terms of x to obtain the symmetric equation of a line

$$
\begin{aligned}
3 x & =z+2 \\
x & =\frac{z+2}{3} \\
\text { Let } x=\lambda & \Rightarrow
\end{aligned} \quad \begin{aligned}
2 x & =y+1 \\
x & =\frac{y+1}{2}
\end{aligned}
$$

3 possible Solutions when investigating 3 planes intersecting:

- Intersect at a point \rightarrow No lines parallel so obtain an exact solution
- Infinite solutions on a line $000 \mid 0 \rightarrow$ equations cancel as parallel planes and equal (coincident) remaining 2 lines can be rearranged to find the line of intersection, with infinite solutions existing
- 2 parallel and unequal, therefore not intersection $000 \mid k$

Advanced Higher Revision Notes

Vectors: Lines \& Planes

The angle between a line and a plane can be found by first finding the direction of the line and the normal to the plane:

$$
\begin{array}{llll}
E g & P_{1}: \begin{array}{l}
2 x+3 y-5 z=1 \\
\\
L_{1}:
\end{array} \quad \frac{\boldsymbol{x}-4}{1}=\frac{y+7}{-2}=\frac{z+2}{3} & \Rightarrow \quad \underline{n}=(2,3,-5) \\
& \Rightarrow \quad \underline{\boldsymbol{d}}=(1,-2,3)
\end{array}
$$

$\underline{\text { Angle between the line and plane: }} \quad \operatorname{Cos} \theta=\frac{n . d}{|\underline{n}||\underline{d}|}$

Intersection of a Line and a Plane

4 Main Steps

- Change line into parametric form if not given
- Substitute these for $x, y \& z$ into the plane
- Solve for λ
- Substitute this value for λ back into parametric to find point

$$
\begin{aligned}
& L_{1}: \quad \frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{2} \Rightarrow x=1+\lambda ; y=2+\lambda ; z=3+2 \lambda \\
& P_{1}: \quad x-y-2 z=-15
\end{aligned}
$$

$$
\begin{aligned}
x-y-2 z & =-15 \\
(1+\lambda)-(2+\lambda)-2(3+2 \lambda) & =-15 \\
1+\lambda-2-\lambda-6-4 \lambda & =-15 \\
-7-4 \lambda & =-15 \\
-4 \lambda & =-8 \\
\rightarrow \lambda & =2
\end{aligned}
$$

$x=1+\lambda=1+2=3$
$y=2+\lambda=2+2=4$
$z=3+2 \lambda=3+4=7 \quad \Rightarrow \quad$ Line \& Plane intersect at $(3,4,7)$

Advanced Higher Revision Notes
12 Matrix Algebra
Matrix Laws/Properties

1. \quad Addition Law (${ }^{* *}$ Need same order for this to work ${ }^{* *}$)
\square
Property $1 \rightarrow \quad A+B=B+A$
2. Commutative Law

Given $A_{\left(r_{1} \times c_{1}\right)} \& B_{\left(r_{2} \times c_{2}\right)}$
Can only multiply if $\underline{\underline{c_{1}=r_{2}}}$
i.e. $\quad(3 \times \mathfrak{2}) \times(\not 2 \times 4)=(3 \times 4)$ matrix solution.
but $(2 \times 4) \times(3 \times 2) \neq$ possible solution as $\underline{\underline{c_{1} \neq r_{2}}}$

Property $2 \rightarrow \quad A B \neq B A$
3. Assosciative Law (**Need to comply with multiplication rules**)
Property $3 \rightarrow \quad A B C=A(B C)=(A B) C$
4. Distributive Law
Property $4 \rightarrow \quad A(B+C)=A B+A C$

5. Transpose Law

A^{T} or $A^{\prime} \quad$ Transpose
This is when we interchange rows and columns
i.e. $\left(\begin{array}{llll}1 & 4 & 6 & 3 \\ 2 & 5 & -1 & -5\end{array}\right) \rightarrow\left(\begin{array}{cc}1 & 2 \\ 4 & 5 \\ 6 & -1 \\ 3 & -5\end{array}\right)$
$\left(A^{\mathrm{T}}\right)^{\mathrm{T}}=A \quad$ or $\quad\left(A^{\prime}\right)^{\prime}=A$
As, $\quad r \rightarrow c \rightarrow r \quad \& \quad c \rightarrow r \rightarrow c$

Property 7	$A B^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}$
Property 8	$(A+B)^{\mathrm{T}}=A^{\mathrm{T}}+B^{\mathrm{T}}$
Property 9	$(A B)^{-1}=B^{-1} A^{-1}$

Using this we can then show,

$$
\begin{aligned}
(A B)(A B)^{-1} & =A B\left(B^{-1} A^{-1}\right) \\
& =A\left(B B^{-1}\right) A^{-1} \\
& =A(I) A^{-1} \\
& =A A^{-1} \\
& =I
\end{aligned}
$$

As $A A^{-1}=I$, similarly $(A B)(A B)^{-1}$ should $=I$

Advanced Higher Revision Notes

Rotation (Anti-Clockwise) $\quad\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
Reflection $\quad(-90 \leq \theta \leq 90)\left(\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right)$

Dilation (Scaling) for $\mathrm{x} \& \mathrm{y}$ values only $\left(\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right)$ General Transformation $(\times 2$ Sim Eqns $)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

Advanced Higher Revision Notes

Determinant and Inverse Matrices

If we wish to find the inverse matrix we must first obtain the determinant of the function often called $\boldsymbol{\operatorname { d e t }}(\boldsymbol{A})$

$$
\begin{aligned}
& \text { If } \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \text { then the determinant of } \mathrm{A} \text { is called } \\
& \operatorname{det}(A)=\frac{1}{a d-b c} \quad \text { in any } 2 \times 2 \text { matrix }
\end{aligned}
$$

It is a little more complicated for a 3×3 matrix

$$
A=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left(\begin{array}{lll}
a & & \\
& \Gamma_{e} & f \\
& \underline{L} & i
\end{array}\right) \cdot\left(\begin{array}{lll}
& \boxed{b} & \\
\Gamma_{d} & & f \\
\underline{g} & & i
\end{array}\right) \cdot\left(\begin{array}{lll}
& & {[} \\
\Gamma_{d} & \bar{l} & \\
\lfloor\mathrm{~g} & h
\end{array}\right]
$$

$$
\operatorname{det}(A)=\frac{1}{a(e i-f h)-b(d i-f g)+c(d h-e g)}
$$

Once we know how to find the determinant we can easily find the inverse of the 2×2 matrix as follows
If $\quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) ; \quad \operatorname{det}(A)=\frac{1}{a d-b c}$ then inverse is
$A^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$

Again it is a little more complicated for a 3×3 matrix
Better to set up a EROs problem with $[\mathrm{A} \mid \mathrm{I}]$ and use Gaussian Elimination to change the LHS into $\mathrm{I},\left[\mathrm{I} \mid \mathrm{A}^{-1}\right]$
The RHS will then be the Inverse of the matrix.
$[\mathrm{A} \mid \mathrm{I}]=\left(\begin{array}{lll}a & b & c \mid 100 \\ d & e & f \mid 010 \\ g & h & i \mid 001\end{array}\right) \rightarrow\left[\mathrm{I} \mid \mathrm{A}^{-1}\right]$

Lastly

When the transpose equals the inverse the matrix is Orthogonal. $A^{\mathrm{T}}=A^{-1} \Rightarrow \operatorname{det} A= \pm 1$

Advanced Higher Revision Notes

Further Ordinary Differential Equations

First Order Differential Equations $\left({ }^{d y} /{ }_{d x}\right.$ only)

$$
\begin{array}{|ll|}
\hline \frac{d y}{d x}+P(x) y=f(x) & \text { Rearrange into this format to determine } \mathrm{P}(\mathrm{x}) \\
I(x)=e^{\int P(x) d x} & \text { Use } \mathrm{P}(\mathrm{x}) \text { to find the Integrating Factor, } \\
\text { Then, } & (* * \text { no constant here, leave 'c' until end**) } \\
I(x) y=\int I(x) f(x) d x & \text { Then rearrange to find } \mathrm{y} \text {, and ensure when } \\
& \text { integrating at this stage to include constant, } \mathrm{c} .
\end{array}
$$

Second Order Differential Equations

Homogenous $2^{\text {nd }}$ Order Diff Eqns $=>$ RHS $=0$
By using this property we can find the Auxiliary Equation and solve it to find what is known as the Complimentary Function
$a \frac{d^{2} y}{d x^{2}}+\mathrm{b} \frac{d y}{d x}+c y=0 \quad$ Is homogeneous format used to find Auxiliary Equation. $a m^{2}+b m+c=0 \quad$ Substituting $\mathrm{m}^{2} ; \mathrm{m} \& \mathrm{c}$ in place of $\frac{d^{2} y}{d x^{2}} ; \frac{d y}{d x} \& y$
Then factorise (may require the quadratic formula)

$$
m=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

There are 3 Complementary Solutions, $\left(y_{c}\right)$ possible

- $b^{2}-4 a c>0 \Rightarrow 2$ real distinct roots say $\mathrm{m}_{1} \& \mathrm{~m}_{2}$

Then solution is of the format :

$$
y=A e^{m_{1}}+B e^{m_{2}}
$$

- $b^{2}-4 a c=0 \Rightarrow$ A repeated root, say m

Then solution is of the format :

$$
y=A e^{m}+B x e^{m}
$$

- $b^{2}-4 a c<0 \Rightarrow 2$ complex roots, say $(\mathrm{p} \pm \mathrm{iq})$

Then solution is of the format :

$$
y=e^{p x}(A \cos (q x)+B \operatorname{Sin}(q x))
$$

Note here that the value of q is taken only, the sign and i are ignored.

Advanced Higher Revision Notes

Non-Homogenous $2^{\text {nd }}$ Order Differential Equations \rightarrow Find a

Particular Integral (Need the Complimentary Function \& a Particular Integral)

$$
a \frac{d^{2} y}{d x^{2}}+\mathrm{b} \frac{d y}{d x}+c y=f(x) \quad \text { Is Non-homogeneous }(\neq 0) .
$$

Depending on the RHS value for $f(x)$ will determine what we shall set $\mathrm{y}=$?

- If is a numerical value i.e. $f(x)=3$, then we shall set $y=a$
- If it is a linear function i.e. $f(x)=2 \mathrm{x}+5$, then we shall set $y=a x+b$
- If it is a quadratic function i.e. $f(x)=5 \mathrm{x}^{2}+3 \mathrm{x}-4$, then we shall set $y=a x^{2}+b x+c$
- If it is a cubic function i.e. $f(x)=2 \mathrm{x}^{3}+7 \mathrm{x}-8$, then we shall set $y=a x^{3}+b x^{2}+c x+d$
- If it is an exponential function i.e. $f(x)=e^{2 x}$, then we shall set $y=k e^{2 x}$,

In general for any exponential value, say r then $y=k e^{r x}$

- If is a trig function i.e. $f(x)=2 \cos (3 \mathrm{x})$, then we shall set $y=p$
- If it is a combination of any two or more we treat each separately i.e. $f(x)+g(x)$

When the required value of y has been chosen we then carry out Second Order Differentiation:
$y=k[f(x)] \quad$ By differentiating twice we can then substitute
$\frac{d y}{d x}=$? into the LHS for values of
$\frac{d^{2} y}{d x^{2}}=? \quad \mathrm{a} \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=k[f(x)]$

After substituting, it is then possible to rearrange and solve the unknowns on the RHS This process finds the Particular Integral, $\left(\mathrm{y}_{\mathrm{p}}\right)$

The final solution to the $2^{\text {nd }}$ O.D.E. problem consists of combining the homogeneous solution with the non-homogeneous
i.e

$$
y=y_{c}+y_{p}
$$

CARE with the Exponential functions

If the Auxiliary Equation has similar roots to that of the RHS $f(x)$ value we must make additional steps:

- If there is a single root of the auxiliary equation (m_{1} or m_{2})
which resembles $f(x)=k e^{r x} \Rightarrow y_{p}=k x e^{r x}$
- If there is a repeated root of the auxiliary equation (m)
which resembles $f(x)=k e^{r x} \Rightarrow y_{p}=k x^{2} e^{r x}$

