Time: 3 hours NATIONAL
Advanced Higher

Specimen Question Paper
for use in and after 2004

Read carefully

1. Calculators may be used in this paper.
2. Candidates should answer all questions .
3. Full credit will be given only where the solution contains appropriate working.

Answer all the questions.

Marks

1. (a) Find partial fractions for

$$
\begin{equation*}
\frac{4}{x^{2}-4} \tag{2}
\end{equation*}
$$

(b) By using (a) obtain

$$
\int \frac{x^{2}}{x^{2}-4} d x
$$

2. Use the Euclidean Algorithm to find integers of x, y such that

$$
195 x+239 y=1
$$

3. The performance of a prototype surface-to-air missile was measured on a horizontal test bed at the firing range and it was found that, until its fuel was exhausted, its acceleration (measured in $\mathrm{m} \mathrm{s}^{-2}$) t seconds after firing was given by

$$
a=8+10 t-\frac{3}{4} t^{2}
$$

(a) Obtain a formula for its speed, t seconds after firing.
(b) The missile contained enough fuel for 10 seconds. What horizontal distance would it have covered on the firing range when its fuel was exhausted?
4. The $n \times n$ matrix A satisfies the equation

$$
A^{2}=5 A+3 I
$$

where I is the $n \times n$ identity matrix.
Show that A is invertible and express A^{-1} in the form of $p A+q I$.
Obtain a similar expression for A^{4}.
5. Use the substitution $x=4 \sin t$ to evaluate the definite integral

$$
\int_{0}^{2} \frac{x+1}{\sqrt{16-x^{2}}} d x
$$

6. Use Gaussian elimination to solve the system of linear equations

$$
\begin{array}{ll}
x+y+z & =0 \\
2 x-y+z & =-1 \cdot 1 \\
x+3 y+2 z & =0 \cdot 9
\end{array}
$$

7. Use Maclaurin's theorem to write down the expansions, as far as the term in x^{3}, of
(i) $\sqrt{1+x}$, where $-1<x<1$, and
(ii) $(1-x)^{-2}$, where $-1<x<1$.
8. (a) Find the derivative of y with respect to x, where y is defined as an implicit function of x by the equation

$$
\begin{equation*}
x^{2}+x y+y^{2}=1 \tag{2}
\end{equation*}
$$

(b) A curve is defined by the parametric equations

$$
x=2 t+1, \quad y=2 t(t-1)
$$

(i) Find $\frac{d y}{d x}$ in terms of t.

2
(ii) Eliminate t to find y in terms of x.
9. Let $u_{1}, u_{2}, \ldots, u_{n}, \ldots$ be an arithmetic sequence and $v_{1}, v_{2}, \ldots, v_{n}, \ldots$ be a geometric sequence. The first terms u_{1} and v_{1} are both equal to 45 , and the third terms u_{3} and v_{3} are both equal to 5 .
(a) Find u_{11}.
(b) Given that v_{1}, v_{2}, \ldots is a sequence of positive numbers, calculate $\sum_{n=1}^{\infty} v_{n}$.
10. Use induction to prove that

$$
\sum_{r=1}^{n} r(r+1)=\frac{1}{3} n(n+1)(n+2)
$$

for all positive integers n.
11. Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=f(x)
$$

in each of the cases
(i) $f(x)=20 \cos x \quad 3$
(ii) $f(x)=20 \sin x \quad 3$
(iii) $f(x)=20 \cos x+20 \sin x$.
12. Let the function f be given by

$$
f(x)=\frac{2 x^{3}-7 x^{2}+4 x+5}{(x-2)^{2}}, \quad x \neq 2
$$

(a) The graph of $y=f(x)$ crosses the y-axis at $(0, a)$. State the value of a.
(b) For the graph of $f(x)$
(i) write down the equation of the vertical asymptote,
(ii) show algebraically that there is a non-vertical asymptote and state its equation.
(c) Find the coordinates and nature of the stationary point of $f(x)$.
(d) Show that $f(x)=0$ has a root in the interval $-2<x<0$.
(e) Sketch the graph of $y=f(x)$. (You must include on your sketch the results obtained in the first four parts of this question.)
13. (a) Show that the lines

$$
\begin{aligned}
& L_{1}: \frac{x-3}{2}=\frac{y+1}{3}=\frac{z-6}{1} \\
& L_{2}: \frac{x-3}{-1}=\frac{y-6}{2}=\frac{z-11}{2}
\end{aligned}
$$

intersect, and find the point of intersection.
(b) Let A, B, C be the points $(2,1,0),(3,3,-1),(5,0,2)$ respectively.

Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
Hence, or otherwise, obtain the equation of the plane containing A, B and C.
14. Let $z=\cos \theta+i \sin \theta$.
(a) Use the binomial theorem to show that the real part of z^{4} is

$$
\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta
$$

Obtain a similar expression for the imaginary part of z^{4} in terms of θ.
(b) Use de Moivre's theorem to write down an expression for z^{4} in terms of 4θ.
(c) Use your answers to (a) and (b) to express $\cos 4 \theta$ in terms of $\cos \theta$ and $\sin \theta$.
(d) Hence show that $\cos 4 \theta$ can be written in the form $k\left(\cos ^{m} \theta-\cos ^{n} \theta\right)+p$ where k, m, n, p are integers. State the values of k, m, n, p.
15. In a chemical reaction, two substances X and Y combine to form a third substance Z. Let $Q(t)$ denote the number of grams of Z formed t minutes after the reaction begins. The rate at which $Q(t)$ varies is governed by the differential equation

$$
\frac{d Q}{d t}=\frac{(30-Q)(15-Q)}{900} .
$$

(a) Express $\frac{900}{(30-Q)(15-Q)}$ in partial fractions.
(b) Use your answer to (a) to show that the general solution of the differential equation can be written in the form

$$
A \ln \left(\frac{30-Q}{15-Q}\right)=t+C
$$

where A and C are constants.
State the value of A and, given that $Q(0)=0$, find the value of C.
Find, correct to two decimal places,
(i) the time taken to form 5 grams of Z,
(ii) the number of grams of Z formed 45 minutes after the reaction begins.

[C100/SQP255]

Mathematics	NATIONAL
Advanced Higher	QUALIFICATIONS

Specimen Solutions
for use in and after 2004

1. (a) $\frac{4}{x^{2}-4}=\frac{4}{(x-2)(x+2)}=\frac{A}{x-2}+\frac{B}{x-2}$

$$
=\frac{1}{x-2}-\frac{1}{x+2}
$$

(b) $\int \frac{x^{2}}{x^{2}-4} d x=\int 1+\frac{4}{x^{2}-4} d x$

$$
\begin{aligned}
& =\int 1+\frac{1}{x-2}-\frac{1}{x+2} d x \\
& =x+\ln (x-2)-\ln (x+2)+c
\end{aligned}
$$

2. $239=1 \times 195+44$
$195=4 \times 44+19$
$44=2 \times 19+6$
$19=3 \times 6+1$
So $1=19-3 \times 6$
$=19-3(44-2 \times 19)$
$=7 \times(195-4 \times 44)-3 \times 44$
$=7 \times 195-31(239-195)$
$=38 \times 195-31 \times 239$
ie $195 x+239 y=1$ when $x=38$ and $y=-31$
3. (a) $a=8+10 t-\frac{3}{4} t^{2}$

$$
\begin{aligned}
v & =\int 8+10 t-\frac{3}{4} t^{2} d t \\
& =8 t+5 t^{2}-\frac{1}{4} t^{3}+c \\
t & =0 ; v=0 \Rightarrow c=0 \\
v & =8 t+5 t^{2}-\frac{1}{4} t^{3}
\end{aligned}
$$

(b) $s=\int v d t=4 t^{2}+\frac{5}{3} t^{3}-\frac{1}{16} t^{4}+c^{\prime}$
$t=0 ; s=0 \Rightarrow c^{\prime}=0$
\therefore when $t=10, s=400+\frac{5000}{3}-625=1441 \frac{2}{3}$
4.

$$
\begin{aligned}
A^{2} & =5 A+3 I & A^{4} & =(5 A+3 I)^{2} \\
\therefore A^{2}-5 A & =3 I & & =25 A^{2}+30 A+9 I \\
A\left(\frac{1}{3} A-\frac{5}{3} I\right) & =I & & =155 A+84 I
\end{aligned}
$$

$\therefore A$ is invertible and $A^{-1}=\frac{1}{3}(A-5 I)$
5. $\int_{0}^{2} \frac{x+1}{\sqrt{16-x^{2}}} d x$
$=\int_{0}^{\pi / 6} \frac{4 \sin t+1}{16-16 \sin ^{2}} 4 \cos t d t$

$$
\Rightarrow \frac{d x}{d t}=4 \cos t
$$

$=\int_{0}^{\pi / 6} \frac{(4 \sin t+1) \times 4 \cos t}{4 \cos t} d t$

$$
x=0 \Rightarrow t=0
$$

$$
x=2 \Rightarrow t=\frac{\pi}{6}
$$

$=\int_{0}^{\pi / 6}(4 \sin t+1) d t$
$=[-4 \cos t+t]_{0}^{\pi / 6}=2 \sqrt{3}+4+\frac{\pi}{6} \approx 1 \cdot 059$

$$
x=4 \sin t
$$

6. | 1 | 1 | 1 | 0 |
| ---: | ---: | ---: | ---: |
| 2 | -1 | 1 | $-1 \cdot 1$ |
| 1 | 3 | 2 | $0 \cdot 9$ |

1	1	1	0	$\left(r_{2}^{\prime}=r_{2}-2 r_{1}\right)$
0	-3	-1	$-1 \cdot 1$	$\left(r_{3}^{\prime}=r_{3}-r_{1}\right)$
0	2	1	0.9	

1	1	1	0
0	-3	-1	$-1 \cdot 1$
0	0	1	$0 \cdot 5$

$$
\left(r_{3}^{\prime \prime}=3 r_{3}+2 r_{2}\right)
$$

Hence $z=0.5 ; y=(1 \cdot 1-0 \cdot 5) / 3=0 \cdot 2$;
$x=-0.2-0.5=-0.7$
7. (i) $f(x)=\sqrt{1+x}$

$$
f(0)=1
$$

$$
=(1+x)^{1 / 2}
$$

$$
f^{\prime}(x)=\frac{1}{2}(1+x)^{-1 / 2} \quad f^{\prime}(0)=\frac{1}{2}
$$

$$
f^{\prime \prime}(x)=-\frac{1}{4}(1+x)^{-3 / 2} \quad f^{\prime \prime}(0)=-\frac{1}{4}
$$

$$
f^{\prime \prime \prime}(x)=\frac{3}{8}(1+x)^{-5 / 2} \quad f^{\prime \prime \prime}(0)=\frac{3}{8}
$$

$$
\begin{equation*}
\therefore \sqrt{1+x} \approx 1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3} \tag{3}
\end{equation*}
$$

(ii) $f(x)=(1-x)^{-2} \quad f(0)=1$

$$
\begin{array}{ll}
f^{\prime}(x)=2(1-x)^{-3} & f^{\prime}(0)=2 \\
f^{\prime \prime}(x)=6(1-x)^{-4} & f^{\prime \prime}(0)=6 \\
f^{\prime \prime \prime}(x)=24(1-x)^{-5} & f^{\prime \prime \prime}(0)=24 \\
\therefore(1-x)^{-2} \approx 1+2 x+3 x^{2}+4 x^{3}
\end{array}
$$

8. (a) $x^{2}+x y+y^{2}=1$

$$
\begin{align*}
2 x+x \frac{d y}{d x}+y+2 y \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =\frac{-(2 x+y)}{x+2 y} \tag{2}
\end{align*}
$$

(b) (i) $\quad x=2 t+1 ; \quad y=2 t(t-1)$

$$
\begin{equation*}
\frac{d x}{d t}=2 ; \frac{d y}{d t}=4 t-2 \Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=2 t-1 \tag{2}
\end{equation*}
$$

(ii) $t=\frac{1}{2}(x-1) \quad y=(x-1)\left[\frac{1}{2}(x-1)-1\right]$

$$
=\frac{1}{2}(x-1)(x-3)
$$

9. (a) $u_{3}=2 d+u_{1}=5$
$2 d=5-45$
$d=-20$
$u_{11}=45+10(-20)$
$=-155$
(b) $45 r^{2}=5$

$$
\begin{aligned}
r & =\frac{1}{3} \text { since } v_{1}, \ldots \text { are positive } \\
S & =\frac{45}{1-\frac{1}{3}}=67 \frac{1}{2}
\end{aligned}
$$

10. $n=1 \quad$ LHS $=1 \times 2=2$

RHS $=\frac{1}{3} \times 1 \times 2 \times 3=2$
True for $n=1$.
Assume true for k and consider

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(r+1) & =\sum_{r=1}^{k} r(r+1)+(k+1)(k+2) \\
& =\frac{1}{3} k(k+1)(k+2)+(k+1)(k+2) \\
& =\frac{1}{3}(k+1)(k+2)(k+3)
\end{aligned}
$$

Thus if true for k then true for $k+1$.
Therefore since true for $n=1$, true for all $n \geq 1$.
11.

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=f(x) \\
& \text { A.E. } m^{2}-5 m+6=0 \\
& \therefore m=2 \text { or } m=3 \\
& \text { C.F. } y=A e^{2 x}+B e^{3 x}
\end{aligned}
$$

(i) $\quad f(x)=20 \cos x ; \quad$ P.I. $=a \cos x+b \sin x$
$\Rightarrow-a \cos x-b \sin x+5 a \sin x-5 b \cos x+6 a \cos x+6 b \sin x=20 \cos x$
$5 a-5 b=20$
$5 a+5 b=0 \Rightarrow a=-b$
$-10 b=20 \Rightarrow b=-2 ; a=2$
Solution $y=A e^{2 x}+B e^{3 x}+2 \cos x-2 \sin x$
(ii) $\quad f(x)=20 \sin x ; \quad$ P.I. $=c \cos x+d \sin x$
$5 c-5 d=0 \Rightarrow c=d$
$5 c+5 d=20 \Rightarrow c=d=2$
Solution $y=A e^{2 x}+B e^{3 x}+2 \cos x+2 \sin x$
(iii) $f(x)=20 \cos x+20 \sin x$

Solution $y=A e^{2 x}+B e^{3 x}+4 \cos x$
12. $f(x)=\frac{2 x^{3}-7 x^{2}+4 x+5}{(x-2)^{2}}$
(a) $x=0 \Rightarrow y=\frac{5}{4} \Rightarrow a=\frac{5}{4}$
(b) (i) $x=2$
(ii) After division, the function can be expressed in quotient/remainder form:

$$
f(x)=2 x+1+\frac{1}{(x-2)^{2}}
$$

Thus the line $y=2 x+1$ is a slant asymptote.
(c) From $(b), f^{\prime}(x)=2-\frac{2}{(x-2)^{3}}$. Turning point when

$$
\begin{aligned}
2- & \frac{2}{(x-2)^{3}}=0 \\
& (x-2)^{3}=1 \\
& x-2=1 \Rightarrow x=3 \\
f^{\prime \prime}(x)= & \frac{6}{(x-2)^{4}}>0 \text { for all } x .
\end{aligned}
$$

The stationary point at $(3,8)$ is a minimum turning point.
(d) $f(-2)=\frac{-16-28-8+5}{(-4)^{2}}<0 ; \quad f(0)=\frac{5}{4}>0$.

Hence a root between -2 and 0 .
(e)

13. (a) $L_{1}: x=3+2 s ; y=-1+3 s ; z=6+s$

$$
L_{2}: x=3-t ; y=6+2 t ; z=11+2 t
$$

\therefore for $x: 3+2 s=3-t \Rightarrow t=-2 s$
\therefore for $y: 3 s-1=6+2 t$

$$
7 s=7 \Rightarrow s=1 ; t=-2
$$

$\therefore L_{1}: x=5 ; y=2 ; z=6+s=7$
$\therefore L_{2}: x=5 ; y=2 ; z=11+2 t=11-4=7$
ie L_{1}^{2} and L_{2} intersect at $(5,2,7)$
(b) $\quad A(2,1,0) ; B(3,3,-1) ; C(5,0,2)$
$\overrightarrow{A B}=\mathbf{i}+2 \mathbf{j}-\mathbf{k} ; \quad \overrightarrow{A C}=3 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$
$\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -1 \\ 3 & -1 & 2\end{array}\right|=3 \mathbf{i}-5 \mathbf{j}-7 \mathbf{k}$
Equation of plane has form $3 x-5 y-7 z=k$
$(2,1,0) \Rightarrow k=1$
Equation is $3 x-5 y-7 z=1$.
14. (a) $z^{4}=(\cos \theta+i \sin \theta)^{4}$

$$
\begin{aligned}
& =\cos ^{4} \theta+4 \cos ^{3} \theta(i \sin \theta)+6 \cos ^{2} \theta(i \sin \theta)^{2}+4 \cos \theta(i \sin \theta)^{3}+(i \sin \theta)^{4} \\
& =\cos ^{4} \theta+4 i \cos ^{3} \theta \sin \theta-6 \cos ^{2} \theta \sin ^{2} \theta-4 i \cos \theta \sin ^{3} \theta+\sin ^{4} \theta \\
& =\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta+i\left(4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta\right)
\end{aligned}
$$

Hence the real part is $\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta$.
The imaginary part is $\left(4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta\right)$

$$
=4 \cos \theta \sin \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
$$

(b) $(\cos \theta+i \sin \theta)^{4}=\cos 4 \theta+i \sin 4 \theta$
(c) $\cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta$.
(d) $\cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta$

$$
\begin{aligned}
& =\cos ^{4} \theta-6 \cos ^{2} \theta\left(1-\cos ^{2} \theta\right)+\left(1-\cos ^{2} \theta\right)^{2} \\
& =\cos ^{4} \theta-6 \cos ^{2} \theta+6 \cos ^{4} \theta+1-2 \cos ^{2} \theta+\cos ^{4} \theta \\
& =8 \cos ^{4} \theta-8 \cos ^{2} \theta+1 \\
& =8\left(\cos ^{4} \theta-\cos ^{2} \theta\right)+1
\end{aligned}
$$

ie $k=8, m=4, n=2, p=1$.
15. (a) $900=A(15-Q)+B(30-Q)$

Letting $Q=30$ gives $A=-60$
and $Q=15$ gives $B=60$
$\frac{900}{(30-Q)(15-Q)}=\frac{-60}{(30-Q)}+\frac{60}{(15-Q)}$
(b) $\frac{d Q}{d t}=\frac{(30-Q)(15-Q)}{900}$
$\therefore \int \frac{900}{(30-Q)(15-Q)} d Q=\int d t$
$\therefore \int \frac{-60}{(30-Q)}+\frac{60}{(15-Q)} d Q=\int d t$
$60 \ln (30-Q)-60 \ln (15-Q)=t+C$
ie $60 \ln \left(\frac{30-Q}{15-Q}\right)=t+C$
$A=60$
$C=60 \ln 2=41 \cdot 59$ to 2 decimal places
(i) $t=60 \ln \left(\frac{30-Q}{15-Q}\right)-60 \ln 2=60 \ln \left(\frac{30-Q}{2(15-Q)}\right)$

When $Q=5, t=60 \ln \frac{25}{20}=13.39$ minutes to 2 decimal places
(ii) $\ln \left(\frac{30-Q}{2(15-Q)}\right)=\frac{t}{60}$
$30-Q=2(15-Q) e^{t / 60}$
$Q\left(2 e^{t / 60}-1\right)=30\left(e^{t / 60}-1\right)$
$Q \quad=\frac{30\left(e^{t / 60}-1\right)}{2 e^{t / 60}-1}$
When $t=45, Q=10 \cdot 36$ grams to 2 decimal places.

