

## Applications

Unit Assessment Practice

## FORMULAE LIST

Circle: The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre $(a, b)$ and radius $r$.

Scalar Product: $a . b=|a||b| \cos \theta$, where $\theta$ is the angle between $a$ and $b$

$$
\text { or } \quad a . b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } a=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A
\end{aligned}
$$

Trigonometric formulae:

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

| $f(x)$ | $f^{\prime}(x)$ |
| :---: | :---: |
| $\sin a x$ | $a \cos a x$ |
| $\cos a x$ | $-a \sin a x$ |

Table of standard integrals:

| $f(x)$ | $\int f(x) d x$ |
| :---: | :---: |
| $\sin a x$ | $-\frac{1}{a} \cos a x+C$ |
| $\cos a x$ | $\frac{1}{a} \sin a x+c$ |

## Outcome 1

1. (a) A straight line has the equation $5 x+y-3=0$.

Write down the equation of the line parallel to the given line, which passes through the point $(4,-8)$
(b) A straight line has the equation $y=-4 x+7$.

Write down the equation of the line parallel to the given line, which passes through the point $(3,-12)$
(c) A straight line has the equation $3 x+y-1=0$.

Write down the equation of the line parallel to the given line, which passes through the point $(6,-4)$
(d) A straight line has the equation $y=-5 x+2$.

Write down the equation of the line parallel to the given line, which passes through the point $(3,-7)$
2. (a)A straight line has the equation $y=4 x+1$

Write down the equation of the line perpendicular to the given line, which passes through the point $(2,-3)$
(b) A straight line has the equation $2 x+5 y=10$

Write down the equation of the line perpendicular to the given line, which passes through the point $(-3,-1)$
(c) A straight line has the equation $5 x+5 y-1=0$

Write down the equation of the line perpendicular to the given line, which passes through the point $(2,-5)$
(d) A straight line has the equation $4 x+2 y=6$

Write down the equation of the line perpendicular to the given line, which passes through the point $(-3,8)$
3. Find the gradient of the following lines:
(a)

(b)

(c)

(d)

4. (a) Determine algebraically if the line $y=x-1$ is a tangent to the circle $(x+4)^{2}+(y-2)^{2}=49$
(b) Determine algebraically if the line $y=x+1$ is a tangent to the circle $x^{2}+y^{2}+2 x-4 y-15=0$
(c) Determine algebraically if the line $y=3 x+10$ is a tangent to the circle

$$
(x-4)^{2}+(y-2)^{2}=40
$$

(d) Determine algebraically if the line $y=x+3$ is a tangent to the circle $x^{2}+y^{2}+4 x-8 y+11=0$
5. Get the equation of the following circles:
(a) Centre $(1,-2)$ and radius 4
(b) Centre $(5,6)$ and radius 5
(c) Centre ( $-3,-7$ ) and radius 10
6. Do the following points lie on the circle given?
(a) $(3,6)$
$x^{2}+y^{2}-6 x-2 y-15=0$
(b) $(-2,3)$
$x^{2}+y^{2}=20$
(c) $(3,-1)$
$(x-2)^{2}+(y+1)^{2}=2$
(d) $(2,3)$
$(x-2)^{2}+(y-6)^{2}=9$
7. (a) A sequence is defined by the recurrence relation $u_{n+1}=m u_{n}+c$ Where $m$ and $c$ are constants.

It is known that $u_{1}=2, u_{2}=4$ and $u_{3}=14$.
Find the recurrence relation described by the sequence and use it to find the value of $u_{6}$.
(b) A sequence is defined by the recurrence relation $u_{n+1}=m u_{n}+c$ Where $m$ and $c$ are constants.

It is known that $u_{1}=10, u_{2}=35$ and $u_{3}=47 \cdot 5$.
Find the recurrence relation described by the sequence and use it to find the value of $u_{6}$.
(c) A sequence is defined by the recurrence relation $u_{n+1}=m u_{n}+c$ Where $m$ and $c$ are constants.
It is known that $u_{1}=5, u_{2}=9.5$ and $u_{3}=20.75$
Find the recurrence relation described by the sequence and use it to find the value of $u_{6}$.
(d) A sequence is defined by the recurrence relation $u_{n+1}=m u_{n}+c$ Where $m$ and $c$ are constants.

It is known that $u_{1}=12, u_{2}=10$ and $u_{3}=8$.
Find the recurrence relation described by the sequence and use it to find the value of $u_{6}$.
8. (a) On a particular day at 07:00, a doctor injects a first dose of 300 mg of medicine into a patient's bloodstream. The doctor then continues to administer the medicine in this way at 07:00 each day.

The doctor knows that at the end of the 24-hour period after an injection, the amount of medicine in the bloodstream will only be $20 \%$ of what it was at the start.
(i) Set up a recurrence relation which shows the amount of medicine in the bloodstream immediately after an injection.

The patient will overdose if the amount of medicine in their bloodstream exceeds 390mg.
(ii) In the long term, if a patient continues with this treatment, is there a danger they will overdose?
Explain your answer.
(b) On a particular day at 06:00, a doctor injects a first dose of 150 mg of medicine into a patient's bloodstream. The doctor then continues to administer the medicine in this way at 06:00 each day.

The doctor knows that at the end of the 24-hour period after an injection, the amount of medicine in the bloodstream will only be $10 \%$ of what it was at the start.
(i) Set up a recurrence relation which shows the amount of medicine in the bloodstream immediately after an injection.

The patient will overdose if the amount of medicine in their bloodstream exceeds 170 mg .
(ii) In the long term, if a patient continues with this treatment, is there a danger they will overdose?

## Explain your answer.

(c) On a particular day at 09:00, a doctor injects a first dose of 50 mg of medicine into a patient's bloodstream. The doctor then continues to administer the medicine in this way at 09:00 each day.

The doctor knows that at the end of the 24-hour period after an injection, the amount of medicine in the bloodstream will only be $25 \%$ of what it was at the start.
(i) Set up a recurrence relation which shows the amount of medicine in the bloodstream immediately after an injection.

The patient will overdose if the amount of medicine in their bloodstream exceeds 70 mg .
(ii) In the long term, if a patient continues with this treatment, is there a danger they will overdose?
Explain your answer.
(d) On a particular day at 08:30, a doctor injects a first dose of 225 mg of medicine into a patient's bloodstream. The doctor then continues to administer the medicine in this way at 08:30 each day.

The doctor knows that at the end of the 24 -hour period after an injection, the amount of medicine in the bloodstream will only be17\% of what it was at the start.
(i) Set up a recurrence relation which shows the amount of medicine in the bloodstream immediately after an injection.

The patient will overdose if the amount of medicine in their bloodstream exceeds 275 mg .
(ii) In the long term, if a patient continues with this treatment, is there a danger they will overdose?

## Explain your answer.

9. (a) A box with a square base and open top has a surface area of $192 \mathrm{~cm}^{2}$. The volume of the box can be represented by the formula:

$$
V(x)=48 x-\frac{1}{4} x^{3} \text { where } x>0
$$

Find the value of $x$ which maximises the volume of the box.
(b) A box with a square base and open top has a surface area of $972 \mathrm{~cm}^{2}$. The volume of the box can be represented by the formula:

$$
V(x)=243 x-\frac{1}{4} x^{3} \text { where } x>0
$$

Find the value of $x$ which maximises the volume of the box.
(c) A box with a square base and open top has a surface area of $432 \mathrm{~cm}^{2}$. The volume of the box can be represented by the formula:

$$
V(x)=108 x-\frac{1}{4} x^{3} \text { where } x>0
$$

Find the value of $x$ which maximises the volume of the box.
(d) A box with a square base and open top has a surface area of $484 \mathrm{~cm}^{2}$. The volume of the box can be represented by the formula:

$$
V(x)=121 x-\frac{1}{4} x^{3} \text { where } x>0
$$

Find the value of $x$ which maximises the volume of the box.
10.
(a) The curve with equation $y=x^{2}(3-x)$ is shown below.


Diagram 1

Calculate the shaded area.
(b) The curve with equation $y=x^{2}(5-x)$ is shown below.


Calculate the shaded area.
(c) The curve with equation $y=x^{2}(6-x)$ is shown below.


Calculate the shaded area.
(d) The curve with equation $y=x^{2}(10-x)$ is shown below


Calculate the shaded area.
11. (a) The line with equation $y=x$ and the curve with equation $y=x^{2}-2 x+2$ are shown below


The line and the curve meet at the points where $x=1$ and $x=2$.

Calculate the shaded area.
(b) The line with equation $y=x+2$ and the curve with the equation $y=4-x^{2}$ are shown below.


The line and the curve meet at the points where $x=-2$ and $x=1$.

Calculate the shaded area.
(c) The line with equation $y=x+3$ and the curve with equation $y=6-x-x^{2}$ are shown below.


The line and the curve meet at the points where $x=-3$ and $x=1$.

Calculate the shaded area.
(d) The line with equation $y=3-x$ and the curve with equation $y=x^{2}+x+3$ are shown below.


The line and the curve meet at the points where $x=-2$ and $x=0$.

Calculate the shaded area.

## ANSWERS

1
(a) $y=-5 x+12$
(b) $y=-4 x$
(c) $y=-3 x+14$
(d) $y=-5 x+8$

2
(a) $4 y=-x-10$
(b) $2 y=5 x+13$ (c) $y=x+7$
(d) $2 y=x+19$

3
(a) 1.2
(b) 0.18
(c) 2.4
(d) -0.84

4 (a) Line meets at $x=-4,3 \Rightarrow>$ Not a tangent.
(b) Line meets at $x=-3,3=>$ Not a tangent.
(c) Line meets at $x=-2$ (twice) $=>$ A tangent.
(d) Line meets at $x=-2,1=>$ Not a tangent.

5 (a) $(x-1)^{2}+(y+2)^{2}=16$
(b) $(x-5)^{2}+(y-6)^{2}=25$
(c) $(x+3)^{2}+(y+7)^{2}=100$

6 (a) Yes (b) No (c) No (d) Yes

7 (a) $U_{n+1}=5 U_{n}-6$
(ii) $U_{6}=1564$
(b) $U_{n+1}=0 \cdot 5 U_{n}+30$
(ii) $U_{6}=58.44$
(c) $U_{n+1}=2 \cdot 5 U_{n}-3$
(ii) $U_{6}=294 \cdot 97$
(d) $U_{n+1}=U_{n}-2$
(ii) $U_{6}=2$

8
(a) $U_{n+1}=0 \cdot 2 U_{n}+300$
(ii) $L=375 \approx$ No danger
(b) $U_{n+1}=0 \cdot 1 U_{n}+150$
(ii) $L=166.67 \approx$ No danger
(c) $U_{n+1}=0 \cdot 25 U_{n}+50$
(ii) $L=66.67 \therefore$ No danger
(d) $U_{n+1}=0 \cdot 17 U_{n}+225$
(ii) $L=271 \frac{7}{83} \approx$ No danger

9 (a) Max at $x=8$
(b) Max at $x=18$
(c) Max at $x=12$
(d) Max at $x=12 \cdot 7$
10 (a) $6 \frac{3}{4}$
(b) $52 \frac{1}{12}$
(c) 108
(d) $833 \frac{1}{3}$

11 (a) $\frac{1}{6}$
(b) $4 \frac{1}{2}$
(c) $10 \frac{2}{3}$
(d) $\frac{4}{3}$

