Higher Mathematics

Multiple choice questions 2

1. Triangle ABC has vertices $\mathrm{A}(-2,-5), \mathrm{B}(-7,5)$ and $\mathrm{C}(1,1)$. AD is a median. The gradient of $A D$ is
A $-\frac{1}{2}$
B 2
C-8
D 8
2. Here are two statements about the points $\mathrm{P}(1,-2)$ and $\mathrm{Q}(7,6)$.
(i) The length of PQ is 10 units
(ii) The gradient of PQ is $\frac{3}{4}$

Which of the following is true
A Neither statement is true
B Only statement (i) is true
C Only statement (ii) is true
D Both statements are true
3. A line L is perpendicular to the line $2 x-5 y-8=0$.

What is the gradient of the line L?
A $\frac{2}{5}$
B $-\frac{2}{5}$
C 2
D $-\frac{5}{2}$
4. The diagram shows a line L; the angle between L and the positive direction of the x -axis is 120°, as shown.

The gradient of L is
A $\sqrt{3}$
B $-\sqrt{3}$
C $\frac{1}{\sqrt{3}}$
D $-\frac{1}{\sqrt{3}}$
5. A recurrence relation is defined as $u_{n+1}=0.2 u_{n}+90, u_{6}=50$. What is the value of u_{8} ?
A 110
B 100
C 112
D 118
6. A sequence is generated by the recurrence relation $u_{n+1}=0.6 u_{n}-80$.

The limit of this sequence is
A $-\frac{400}{3}$
B-200
C-800
D 200
7. $f(x)=2 x^{2}-5$ and $g(x)=2 x-1$. The value of $g(f(-3))$ is
A 25
B 61
C 93
D 45
8. Functions f and g are defined on suitable domains by $f(x)=\sin x$ and $g(x)=x-\frac{\pi}{3}$ The value of $f\left(g\left(\frac{\pi}{2}\right)\right)$ is
A $\frac{1}{2}$
B $\frac{\sqrt{3}}{2}$
C $\frac{1}{2}-\frac{\pi}{3}$
D 1
9. $f(x)=\frac{x-1}{(x+3)(x-2)}$. A suitable domain for $f(x)$ is
A $x \in R, x \neq 1$
B $x \in R, x \neq 1,-3,2$
C $x \in R, x \neq-3,2$
D $x \in R, x \neq 3,-2$
10. What is the derivative of $(3 x-5)^{4}$
A $4(3 x-5)^{3}$
B $12(3 x-5)^{3}$
C $\frac{(3 x-5)^{5}}{5}$
D $\frac{(3 x-5)^{5}}{15}$
11. A curve has equation $y=3 x^{2}-5 x$. The gradient of this curve at the point $(-1,8)$ is
A 1
B -11
C -6
D 4
12. A curve has equation $y=2 x^{2}-8 x$. The gradient of this curve at the point P is 4 . The coordinates of P are
A $(3,6)$
B (3,-6)
C $(4,0)$
D $(-1,10)$
13. What is the derivative of $\frac{1}{3 \mathrm{x}^{2}}$.
$A-\frac{6}{x^{3}}$
B $-\frac{1}{x^{3}}$
$C-\frac{2}{3 x^{3}}$
D $-\frac{1}{6 x^{3}}$
14. $A=3 \pi r^{2}-4 \pi r$. The rate of change of A with respect to r when $r=4$ is
A 20π
B 32π
C 24π
D 8π
15. The derivative of a function is $f^{\prime}(x)=x^{3}-8$. Here are two statements about f :
(i) f is increasing at $\mathrm{x}=1$
(ii) f is stationary at $\mathrm{x}=2$

Which of the following is true?
A Neither statement is correct
B Only statement (i) is correct
C Only statement (ii) is correct
D Both statements are correct
16. $x^{2}-6 x+1$ is expressed in the form $(x+a)^{2}+b$. The values of a and b are
A $\mathrm{a}=3, \mathrm{~b}=8$
B $a=-3, b=-10$
C $\mathrm{a}=-3, \mathrm{~b}=-8$
D $a=-3, b=10$
17. $3 x^{2}+12 x-2$ is expressed in the form $p(x+q)^{2}+r$. The value of r is
A - 6
B 6
C -14
D -10
18. $2 \cos x+\sqrt{3}=0$. The solution to this equation when $\pi \leq x \leq \frac{3 \pi}{2}$
A $\frac{2 \pi}{3}$
B $\frac{4 \pi}{3}$
C $\frac{5 \pi}{6}$
D $\frac{7 \pi}{6}$
19. Given $0 \leq \mathrm{a} \leq \frac{\pi}{2}$ and $\sin \mathrm{a}=\frac{1}{2}$, the exact value of $\cos 2 \mathrm{a}$ is
A $\frac{1}{2}$
B $-\frac{1}{2}$
$C-\frac{\sqrt{3}}{2}$
D $\frac{3}{2}$
20. $f(x)=3 \sin \left(2 x-\frac{2 \pi}{3}\right)+8$. The range of values of $f(x)$ are
A $0 \leq \mathrm{f}(\mathrm{x}) \leq 11$
B $-3 \leq f(x) \leq 5$
C $3 \leq f(x) \leq 11$
D $5 \leq f(x) \leq 11$
21. How many solutions does the equation $(2 \sin x+1)(\sin x+1)=0$ have in the range $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$
A 1
B 2
C 3
D 4
22. k and a are given by
$k \sin a=\sqrt{3}$
$\mathrm{k} \cos \mathrm{a}=1$
where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 90$. The values of k and a are
A $\mathrm{k}=2, \mathrm{a}=60$
B $\mathrm{k}=2, \mathrm{a}=30$
C $k=\sqrt{10}, a=60$
D $\mathrm{k}=\sqrt{10}, \mathrm{a}=30$
23. The diagram shows a graph of the form $y=a \cos b x+c$.

The equation of this graph is
A $y=3 \cos x-1$
B $y=3 \cos 2 x-1$
C $\mathrm{y}=2 \cos 2 \mathrm{x}-2$
D $y=6 \cos 2 x-4$
24. Here are two statements about the roots of the equation $x^{2}-8 x+12=0$.
(i) The roots are real and rational
(ii) The roots are equal

Which of the following is true?
A Neither statement is correct
B Only statement (i) is correct
C Only statement (ii) is correct
D Both statements are correct
25. A function f is given by $f(x)=2 x^{2}-12 x+8$.

Which of the following describes the roots of $f(x)=0$.
A The roots are unreal
B The roots are equal
C The roots are rational and distinct
D The roots are real and distinct
26. The y-axis is a tangent to the circle with centre $(-4,7)$. The equation of this circle is
A $(x-4)^{2}+(y+7)^{2}=16$
B $(x+4)^{2}+(y-7)^{2}=16$
$C(x-4)^{2}+(y+7)^{2}=49$
D $(x-4)^{2}+(y+7)^{2}=16$
27. A circle has equation $x^{2}+y^{2}-6 x+8 y-39=0$. The radius of this circle has length
A 64
B 8
C $\sqrt{139}$
D $\sqrt{46}$
28. A circle has centre $(-2,4)$ and a tangent to the circle is drawn at the point $(4,7)$. The gradient of this tangent is
A 2
B -2
C $-\frac{1}{2}$
D $\frac{1}{2}$
29. The line $y=2 x-5$ intersects the circle $x^{2}+y^{2}=10$ at two points. The x-coordinates of the points of intersection are
A $x=2,-2$
B $x=-1,-3$
C $\mathrm{x}=1,3$
D $\mathrm{x}=-1,1$
30. The vectors $\mathbf{u}=2 \mathbf{i}-4 \mathbf{k}$ and $\mathbf{v}=6 \mathbf{i}-4 \mathbf{j}+\mathrm{a} \mathbf{k}$ are perpendicular. The value of a is
A 3
B -3
C 2
D -2
31. $\mathrm{A}(2,-1,3), \mathrm{E}(4,-5,9)$ and $\mathrm{B}(7,-11,18)$ are three collinear points. E lies between A and B . The ratio in which E divides $A B$ is
A $1: 2$
B $2: 3$
C $3: 2$
D 2:1
32. Vectors \mathbf{u} and \mathbf{v} are such that $|\mathbf{u}|=4$ and $|\mathbf{v}|=6$ and $\mathbf{u} . \mathbf{v}=10$. The value of $\mathbf{v} .(\mathbf{u}+\mathbf{v})$ is
A 20
B 26
C 46
D 60
33. The vector a has components $\left(\begin{array}{c}-6 \\ -8 \\ 0\end{array}\right)$. A unit vector parallel to \mathbf{a} is
A $-\frac{3}{5} \mathbf{i}-\frac{4}{5} \mathbf{j}$
B $-\frac{4}{5} \mathbf{i}+\frac{3}{5} \mathbf{j}$
C $-6 \mathbf{i}-8 \mathbf{j}$
D $-\frac{3}{50} \mathbf{i}-\frac{4}{50} \mathbf{j}$
34. For what values of x is $x^{2}+6 x<0$
A $x<-6, x>0$
B $\mathrm{x}<0, \mathrm{x}>6$
C $-6<x<0$
D $0<x<6$
35. For what values of x is $7 x-x^{2}-6>0$
A $\mathrm{x}<1, \mathrm{x}>6$
B $x<-6, x>-1$
C $-6<x<-1$
D $1<x<6$
36. Given $f(x)=2 \sin ^{2} x, f^{\prime}(x)$ is equal to
A $4 \cos x$
B $4 \cos ^{2} \mathrm{x}$
C $4 \sin x \cos x$
D $2 \sin ^{3} x$
37. Find $\int 4 \cos (2 x+3) d x$.
A $4 \sin (2 x+3)+C$
B $-4 \sin (2 x+3)+C$
C $2 \sin (2 x+3)+C$
D $-2 \sin (2 x+3)+C$
38. The shaded area shown opposite is given by

A $\int_{-2}^{2}\left(2 x^{2}-4\right)-\left(12-2 x^{2}\right) d x$
B $\int_{-2}^{4}\left(2 x^{2}-4\right)-\left(12-2 x^{2}\right) d x$
C $\int_{-2}^{2}\left(12-2 x^{2}\right)-\left(2 x^{2}-4\right) d x$
D $\int_{-2}^{4}\left(12-2 x^{2}\right)-\left(2 x^{2}-4\right) d x$

39. The diagram shows the graph of $y=x^{2}-2 x-12$.

The shaded area is given by
A $\left[\frac{1}{3} x^{3}-x^{2}-12 x\right]_{1}^{4}$
B $\left[\frac{1}{3} x^{3}-x^{2}-12 x\right]_{-13}^{-4}$
C $[2 x-2]_{1}^{4}$

D $[2 \mathrm{x}-2]_{-13}^{-4}$
40. The diagram shows the graph of $y=f(x)$. The graph has an equation of the form $y=k(x+a)(x+b)$.

The equation of this graph is
A $\mathrm{y}=3(\mathrm{x}+2)(\mathrm{x}-4)$
B $y=-3(x+2)(x-4)$
C $y=-3(x-2)(x+4)$

D $y=3(x-2)(x+4)$
41. The diagram opposite shows part of the graph of $y=f(x)$.

Which of the following shows the graph of $y=-f(x+2)$.

A

B

C

D

42. The diagram shows part of the graph of $y=4 k^{x}$.

The value of k is
A 3
B 2
C 9
D 18

43. The exact value of $4 \sin \frac{\pi}{3} \cos \left(-\frac{\pi}{3}\right)$ is
A -1
B 3
C -3
D $\sqrt{3}$
44. The diagram shows the graph of $f(x)=\log _{3}(x-2)$.
The point $(\mathrm{c}, 2)$ lies on this graph.
The value of c is
A 10
B 11
C 5
D 6

45. The diagram shows the graph of $y=f(x)$.

The equation of $f(x)$ is
A $\mathrm{f}(\mathrm{x})=\log _{4}(\mathrm{x}-5)$
B $\mathrm{f}(\mathrm{x})=\log _{4}(\mathrm{x}+5)$
C $\mathrm{f}(\mathrm{x})=\log _{2}(\mathrm{x}-5)$
D $\mathrm{f}(\mathrm{x})=\log _{2}(\mathrm{x}+5)$

46. Which of the following shows a parabola with equation $y=a x^{2}+b x+c$, where $\mathrm{a}<0$ and $\mathrm{b}^{2}-4 \mathrm{ac}=0$.
A

B

C

D

47. $x-2$ is a factor of $x^{3}-9 x+k$. The value of k is
A 13
B -13
C 10
D -10
48. $\frac{1}{2} \log _{2} 36-\log _{2} 3$ is equal to
A 3
B 1
C 0
D 6
49. The diagram opposite shows the graph of $y=f(x)$.

Which of the following could be the graph of $y=f^{\prime}(x)$.

A

B

C

D

50. The diagram shows the graph of $y=f(-x)-2$. The graph of $y=f(x)$ has a stationary point at
A ($-1,4$)
B $(-1,-2)$
C $(-1,0)$
D (-1,-4)

Answers:

1.	C		26.	B
2.	B		27.	B
3.	D		28.	B
4.	B		29.	C
5.	A		30.	A
6.	B		31.	B
7.	A		32.	C
8.	A		33.	A
9.	C		34.	C
10.	B		35.	D
11.	B		36.	C
12.	B		37.	C
13.	C		38.	C
14.	A		39.	A
15.	C		40.	B
16.	C		41.	C
17.	C		42.	A
18.	D		43.	D
19.	A		44.	B
20.	D		45.	A
21.	B		46.	C
22.	A		47.	C
23.	B		48.	B
24.	B		49.	A
25.	D		50.	B

