Higher Mathematics

Multiple Choice 3

1. A curve has equation $y=x^{4}-3 x^{2}$. The gradient of the tangent to this curve at the point $(-1,-2)$ is
A -3
B 2
C -10
D 3
2. Given $\sin x=\frac{1}{2}, 0 \leq x \leq 360$, the exact value of $\sin 2 x$ is
A $\frac{1}{2}$
B $\frac{\sqrt{5}}{2}$
C $\frac{\sqrt{3}}{2}$
D 1
3. The derivative of $\frac{1}{6 x^{3}}$ is
A $-\frac{18}{\mathrm{x}^{4}}$
B $-\frac{18}{\mathrm{x}^{2}}$
C $-\frac{1}{2 \mathrm{x}^{2}}$
D $-\frac{1}{2 \mathrm{x}^{4}}$
4. The line with equation $\mathrm{y}=3 \mathrm{x}$ is a tangent to the circle with equation $\mathrm{x}^{2}+\mathrm{y}^{2}=40$. The x-coordinates of the points of intersection are
A $\mathrm{x}=-2,2$
B $\mathrm{x}=-1,1$
C $\mathrm{x}=-\sqrt{10}, \sqrt{10}$
D $-10,10$
5. The diagram shows the line $2 x-3 y-6=0$. Tan a^{0} is equal to
A $\frac{2}{3}$
B $\frac{3}{2}$
C $-\frac{2}{3}$
D $-\frac{3}{2}$

6. How many solutions does the equation $(3 \cos x+1)(\cos x-1)=0$ have in the interval $0 \leq x \leq \pi$.
A 1
B 2
C 3
D 4
7. The range of values of $f(x)=9-2 \cos \left(3 x-\frac{2 \pi}{3}\right)$ is
A $7 \leq \mathrm{f}(\mathrm{x}) \leq 11$
B $-11 \leq f(x) \leq-7$
C $5 \leq f(x) \leq 9$
D $-9 \leq f(x) \leq-7$
8. The vector a has components $\left(\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right)$. A unit vector parallel to \mathbf{a} is
A $-9 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$

D $3 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$
9. Given $f(x)$ is defined on a suitable domain as $f(x)=4\left(2-2 x^{3}\right)^{-\frac{1}{2}}, f^{\prime}(x)$ is equal to
A $-2\left(2-2 x^{3}\right)^{-\frac{3}{2}}$
B $4\left(2-2 x^{3}\right)^{-\frac{3}{2}}$
C $-4\left(2-2 x^{3}\right)^{-\frac{3}{2}}$
D $12 x^{2}\left(2-2 x^{3}\right)^{-\frac{3}{2}}$
10. The values of x for which $15+2 \mathrm{x}-\mathrm{x}^{2}>0$ are
A $-3<x<5$
B $-5<x<3$
C $x<-3, x>5$
D $x<-5, x>3$
11. $4 \sin (\mathrm{x}-36.5)^{0}$ has a minimum value in the range $0 \leq \mathrm{x} \leq 360$ when x is equal to
A 306.5^{0}
B 233.5^{0}
C 216.5^{0}
D 143.5^{0}
12. Which of the following graphs has equation $y=\log _{2}(x-4)$.
A

B

C

D

13. Two vectors are $\mathbf{u}=2 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$ and $\mathbf{v}=10 \mathbf{i}-4 \mathbf{k}$. The vectors \mathbf{u} and \mathbf{v} are perpendicular. The value of a is
A -5
B 5
C 4
D 3
14. k and a are given by
$k \sin a=2$
$k \cos a=2$
where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 90$. The values of k and a are
A $\mathrm{k}=8, \mathrm{a}=30^{\circ}$
B $\mathrm{k}=8, \mathrm{a}=45^{0}$
C $\mathrm{k}=\sqrt{8}, \mathrm{a}=30^{\circ}$
D $\mathrm{k}=\sqrt{8}, \mathrm{a}=45^{0}$
15. The line $A B$ makes an angle of $\frac{\pi}{3}$ with the y-axis, as shown.
The gradient of $A B$ is
A $\sqrt{3}$
B $-\sqrt{3}$
C $-\frac{1}{\sqrt{3}}$
D $\frac{1}{\sqrt{3}}$

16. The graph opposite is of the form $y=a \cos b x+c$.

The values of a and c are
A $\mathrm{a}=3, \mathrm{c}=-2$
B $\mathrm{a}=2, \mathrm{c}=3$
$\mathrm{C} \mathrm{a}=3, \mathrm{c}=2$
D $\mathrm{a}=2, \mathrm{c}=-3$

17. $2 x^{2}+12 x-1$ is expressed in the form $a(x+b)^{2}+c$. The value of c is
A -8
B -10
C -19
D -17
18. $f(x)=x^{3}-5$ and $g(x)=3 x+2$. The value of $f(g(-1))$ is
A -10
B - 6
C -4
D -16
19. $\mathrm{f}(\mathrm{x})=\sqrt{25-\mathrm{x}^{2}}$. A suitable domain for $\mathrm{f}(\mathrm{x})$ is
A $-5<x<5$
B $x>5$
C $-25<x<25$
D $x>-5$
20. $\int 8 \sin \left(4 x+\frac{\pi}{2}\right) d x$ is
A $8 \cos \left(4 x+\frac{\pi}{2}\right)+C$
B $-8 \cos \left(4 x+\frac{\pi}{2}\right)+C$
C $-2 \cos \left(4 x+\frac{\pi}{2}\right)+C$
D $2 \cos \left(4 x+\frac{\pi}{2}\right)+C$

1.	B		11.	A
2.	C		12.	A
3.	D		13.	B
4.	A		14.	D
5.	A		15.	C
6.	B		16.	C
7.	A		17.	C
8.	C		18.	B
9.	D		19.	A
10.	A		20.	C

