Higher Mathematics Multiple Choice 3

- 1. A curve has equation $y = x^4 3x^2$. The gradient of the tangent to this curve at the point (-1,-2) is
 - A -3 B 2 C -10 D 3
- 2. Given sin $x = \frac{1}{2}$, $0 \le x \le 360$, the exact value of sin 2x is
 - A $\frac{1}{2}$ B $\frac{\sqrt{5}}{2}$ C $\frac{\sqrt{3}}{2}$ D 1
- 3. The derivative of $\frac{1}{6x^3}$ is
 - A $-\frac{18}{x^4}$ B $-\frac{18}{x^2}$ C $-\frac{1}{2x^2}$ D $-\frac{1}{2x^4}$
- 4. The line with equation y = 3x is a tangent to the circle with equation $x^2 + y^2 = 40$. The x-coordinates of the points of intersection are
 - A x = -2, 2 B x = -1, 1 C $x = -\sqrt{10}, \sqrt{10}$ D -10, 10
- 5. The diagram shows the line 2x 3y 6 = 0. Tan a^0 is equal to
 - A $\frac{2}{3}$ B $\frac{3}{2}$
 - C $\frac{2}{3}$ D $\frac{3}{2}$

- 6. How many solutions does the equation $(3\cos x + 1)(\cos x 1) = 0$ have in the interval $0 \le x \le \pi$.
 - A 1 B 2 C 3 D 4
- 7. The range of values of $f(x) = 9 2\cos\left(3x \frac{2\pi}{3}\right)$ is
 - A $7 \le f(x) \le 11$ B $-11 \le f(x) \le -7$ C $5 \le f(x) \le 9$ D $-9 \le f(x) \le -7$

8. The vector **a** has components $\begin{pmatrix} -1\\2\\2 \end{pmatrix}$. A unit vector parallel to **a** is **i j i j i j k** $C -\frac{1}{3} + \frac{2}{3} + \frac{2}{3}\mathbf{k}$ D $3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ 9. Given f(x) is defined on a suitable domain as $f(x) = 4(2 - 2x^3)^{-\frac{1}{2}}$, f'(x) is equal to

A
$$-2(2-2x^3)^{-\frac{3}{2}}$$
 B $4(2-2x^3)^{-\frac{3}{2}}$ C $-4(2-2x^3)^{-\frac{3}{2}}$ D $12x^2(2-2x^3)^{-\frac{3}{2}}$

10. The values of x for which $15 + 2x - x^2 > 0$ are

A -3 < x < 5 B -5 < x < 3 C x < -3, x > 5 D x < -5, x > 3

11. $4\sin(x - 36.5)^0$ has a minimum value in the range $0 \le x \le 360$ when x is equal to

A 306.5° B 233.5° C 216.5° D 143.5°

12. Which of the following graphs has equation $y = \log_2 (x - 4)$.

13. Two vectors are $\mathbf{u} = 2\mathbf{i} - 4\mathbf{j} + \mathbf{ak}$ and $\mathbf{v} = 10\mathbf{i} - 4\mathbf{k}$. The vectors \mathbf{u} and \mathbf{v} are perpendicular. The value of a is

A -5 B 5 C 4 D 3

A $8\cos(4x + \frac{\pi}{2}) + C$ B $-8\cos(4x + \frac{\pi}{2}) + C$ C $-2\cos(4x + \frac{\pi}{2}) + C$ D $2\cos(4x + \frac{\pi}{2}) + C$

1.	В	11.	А
2.	С	12.	Α
3.	D	 13.	В
4.	Α	14.	D
5.	Α	15.	С
6.	В	 16.	С
7.	Α	17.	С
8.	С	18.	В
9.	D	19.	A
10.	A	20.	С