- 1. What is the distance, in units, between the points (-1, 2) and (4, 5)?
 - A $\sqrt{8}$
 - **B** $\sqrt{16}$
 - $C \qquad \sqrt{34}$
 - $D \sqrt{58}$
- 2. What is the distance, in units, between the points (a, b) and (-b, a)
 - **A** $\sqrt{2}\sqrt{a^2+b^2}$
 - **B** $\sqrt{2}(a+b)$
 - $C \qquad \sqrt{2}(\sqrt{a}+\sqrt{b})$
 - $\mathsf{D} \qquad 2\sqrt{a^2+b^2}$
- 3. The line through the points (-2, 5) and (7, a) has a gradient of 3. What is the value of a A 8
 - B 22
 - C 28
 - D 32
- 4. The equation of the line 3y = ax + 1 where $a \neq 0$ is a constant. Given that the line has a gradient of $\frac{7}{5}$, what is the value of a?
 - **A** $-\frac{21}{5}$ **B** $-\frac{7}{5}$ **C** $\frac{7}{5}$ **D** $\frac{21}{5}$
- 5. The line with equation $y = -\frac{3}{a}x + 4$, where $a \neq 0$ is a constant, is perpendicular to the line with equation $y = \frac{1}{2}x + 1$. What is the value of a?

A -6 **B** $-\frac{3}{2}$ **C** $\frac{3}{2}$ **D** 6 6. The line h passes through (3, -2) and is parallel to the line with equation $y = \frac{1}{2}x + 5$.

What is the equation of h

- $\mathbf{A} \qquad x 2y + 1 = 0$
- $\mathbf{B} \qquad x 2y 7 = 0$
- C x 2y + 7 = 0
- D x 2y 5 = 0
- 7. Find the equation of the line passing through (6, -4) and is parallel to the line with equation 2x 3y 1 = 0
 - $A \qquad 2x 3y 24 = 0$
 - $\mathbf{B} \qquad 3x + 2y 10 = 0$
 - $C \qquad 2x y 16 = 0$
 - $D \qquad 2x 3y 18 = 0$
- 8. A straight line has equation y = -x + 4What angle does the line make with the positive direction of the x-axis?
 - A 45°
 - B 120°
 - C 135°
 - D 150°

9. Given that (1, 0) is the midpoint of A(-3, a) and B(b, 2), what are the values of a and b?

а	b	
-2	4	
-2	5	
2	-5	
4	-2	
	a -2 -2 2 4	a b -2 4 -2 5 2 -5 4 -2

- 10. Triangle ABC is shown. Here are two statements about the lineBD
 - I. BD is an altitude of triangle ABC
 - II. BD is the perpendicular bisector of AC

Which of the following is true?

- A neither statement is correct.
- B only statement I is correct.
- C only statement II is correct
- D Both statements are correct

Triangle ABC with vertices A(-4, 1), B(4, 3) and C(1, 5) is shown. 11. y₽ С Point M(0, 2) is the midpoint of AB. What is the equation of the median through C? 3x - y + 2 = 0Α Μ x - 4y + 8 = 0В A• 4x + y - 2 = 0С x 3x - y - 1 = 0D

Triangle ABC with vertices A(6, 7), B(7, 0) and C(-1, -2) is shown. 12.

The line through C and B Has gradient $\frac{1}{4}$. Find the equation of the altitude.

Α 4x + y - 11 = 0

B
$$x - 4y + 22 = 0$$

$$C \qquad 4x + y - 31 = 0$$

D
$$8x - 3y - 27 = 0$$

What is the gradient of the straight line shown in the diagram? 13.

A line makes an angle of 60° with the positive direction of the x axis. 14. What is the gradient of the line?

 $\sqrt{3}$ Α $\frac{\sqrt{3}}{2}$ В $\frac{1}{\sqrt{3}}$ С $\frac{1}{2}$ D

15. A function f is defined by $f(x) = \sqrt{x+2}$. For which values of x is the function f undefined

- $A \qquad x > -2$
- **B** *x* < -2
- **C** x < -1
- **D** *x* < 0

16. A function f is defined by $f(x) = \frac{x-3}{2x^2 - x - 6}$

Which numbers must be excluded from the domain of f?

A 0 only B $-\frac{3}{2}$ and 2 only C 3 only D $-\frac{3}{2}$, 2 and 3.

17. The graphs of y = f(x) and y = g(x) are shown in the diagram. For which values of x is f(x) < g(x) $y \neq (x)$

18. The diagram shows the graph of $y = \log_{10}(x+a)$ What is the value of a?

- 19. Two functions f and g are defined by f(x) = 4x+1 and $g(x) = x^2 2$ Find an expression for f(g(x))
 - **A** $4x^2 7$
 - **B** $4x^2 1$
 - C 16 x^2 + 8x 1
 - **D** $4x^3 + x^2 8x 2$

- 20. Two functions f and g are defined by f(x) = 2x+1 and $g(x) = x^2 + x$ Find an expression for g(f(x))
 - **A** $x^2 + 2x + 1$
 - **B** $2x^2 + 2x + 1$
 - *C* $2x^2 + 4x + 2$
 - **D** $4x^2 + 6x + 2$
- 21. Two functions f and g are defined by $f(x) = \frac{3x}{x+1}$ and $g(x) = x^2 1$ Find an expression for f(g(x))

 $A \qquad 3 - \frac{3}{x^2}$ $B \qquad \frac{9x^2}{x^2 + 2x + 2}$ $C \qquad 3 - \frac{1}{x^2}$ $D \qquad \frac{3}{x}$

22. A parabola has equation $y = x^2 + 6x + 2$ What are the coordinates of the parabola's turning point?

- A (3,-7)
- B (-3, 29)
- C (3, 29)
- D (-3, -7)
- 23. What is the maximum value of $3 \sin(x + \frac{\pi}{2})$, and the smallest value of $x \ge 0$ at which it occurs?

	Maximum value	x
A	3	0
В	3	$\frac{3\pi}{2}$
C	4	0
D	4	π

24. The curve with equation $y = k \cos(ax) + b$ is shown below. What are the values of a and k?

25. What is the exact value of $\sin(\frac{4\pi}{3})$?

A	$-\frac{\sqrt{3}}{2}$
В	$-\frac{1}{2}$
С	$\frac{1}{2}$
D	$\frac{\sqrt{3}}{2}$

26. A function f is defined by $f(x) = x^3 + kx^2 + 2x$. Given that f'(2) = 26, what is the value of k

> A 3 B $\frac{7}{2}$ C 5 D -3

27. A function f is defined by $f(x) = 3x^3 + 2kx + 9$. Given that f'(-1) = 13, what is the value of k

> **A** $-\frac{7}{2}$ **B 2 C 5 D 11**

28. Given that $f(x) = 3x^3 + 7x + 1$, find the rate of change of f when x = 2

A 28
B 31
C 39
D 43

29. Given that $f(x) = \sqrt[3]{x} + 2x^2$, find the rate of change of f when x = 8

- **A** $32\frac{1}{12}$ **B** $32\frac{1}{6}$ **C** $32 + 3\sqrt{2}$ **D** 130
- 30. Differentiate $\sqrt[3]{x^2}$ with respect to x.
 - $A \qquad \frac{3}{2}\sqrt{x}$ $B \qquad \frac{2}{3\sqrt[3]{x}}$ $C \qquad \frac{2}{3\sqrt[3]{x}}$
 - D $2\sqrt[3]{x}$

31. What is the gradient of the tangent to the curve $y = 4x^3 + x^2 + 3$ at x = 2?

- **A** $24\frac{2}{3}$
- B 39
- C 52
- D 55

32. A curve has $\frac{dy}{dx} = x^2 + 5x + 4$

Find the x-values of the points on the curve where the tangent has a gradient of 4

- A -4 and -1
- B 1 and 4
- C -5 and 0
- D 0 and 5

- 33. A curve satisfying $\frac{dy}{dx} = 4x$ has a tangent at x = 3. What is the gradient of any line perpendicular to this tangent?
 - A 12 B --
 - **B** $-\frac{1}{12}$
 - $C = \frac{1}{12}$
 - D -12
- 34. A function is defined by $f(x) = 2x^2 9x = 4$ What is the largest range of x-values for which f(x) is strictly increasing?
 - **A** $x < \frac{9}{4}$ **B** $x > \frac{9}{4}$ **C** $\frac{1}{2} < x < 4$ **D** $x > \frac{1}{2}, x > 4$
- 35. A function is defined by $f(x) = 3x^2 x = 4$ What is the largest range of x-values for which f(x) is strictly decreasing?
 - A
 x < 0

 B
 x > 0

 C
 $x < \frac{1}{6}$
 - **D** $x > \frac{1}{6}$

36. A curve has $\frac{dy}{dx} = x^2 + x - 6$. What are the x-values of the curve's stationary points?

- A -3 and -2
- B 3 and -2
- C -3 and 2
- D 3 and 2
- 37. A curve has $\frac{dy}{dx} = x^2 4x + 4$, has a stationary point at x = 2. What is the nature of this stationary point?
 - A Maximum turning point
 - B Minimum turning point
 - C rising point of inflexion
 - D falling point of inflexion

38. A curve has $\frac{dy}{dx} = x^2 - 6x - 9$, has a stationary point at x = -3. What is the nature of this stationary point?

- A Maximum turning point
- B Minimum turning point
- C rising point of inflexion
- D falling point of inflexion
- 39. A sequence is defined by the recurrence relation $U_{n+1} = aU_n + b$ where a and b are constants. Given that $U_0 = 4$ and $U_1 = 8$, find an expression for a in terms of b.
 - **A** $a = \frac{1}{2} \frac{1}{8}b$
 - **B** $a = 2 \frac{1}{4}b$
 - $C \qquad a = \frac{1}{2} + \frac{1}{8}b$
 - **D** $a = 2 + \frac{1}{4}b$
- 40. A sequence is defined by the recurrence relation $U_{n+1} = -3U_n + 7$ with $U_0 = 2$. What is the value U_2 ?
 - A -1
 - B 1
 - *C* 4
 - D 10
- 41. A sequence is defined by the recurrence relation $U_{n+1} = \frac{1}{2}U_n + k$ with $U_0 = k$. Find an expression for U_2 in terms of k.
 - **A** $\frac{3}{4}k$
 - **B** $\frac{3}{2}k$
 - $C \qquad \frac{7}{4}k$
 - D $\frac{5}{2}k$
- 42. A sequence is defined by the recurrence relation $U_{n+1} = \sqrt{5}U_n 1$ with $U_0 = 0$. What is the value U_2 ?
 - **A** $-\sqrt{5} 1$ **B -1 C** $\sqrt{5} - 2$ **D** $-\sqrt{5}$

43. Two sequences are defined by $u_{n+1} = \frac{1}{2}u_n + 7$ and

 $v_{n+1} = -v_n + 2$ with $u_0 = -4$ and $v_0 = 10$.

Here are two statements about the sequences:

I. u_n tends to a limit as $n \to \infty$

II. v_n tends to a limit as $n \to \infty$

Which of the following is true?

- A neither statement is correct
- B only statement I is correct
- C only statement II is correct
- D both statements are correct
- 44. A sequence is defined by the recurrence relation $u_{n+1} = \frac{1}{9}u_n 2$ with $u u_0 = 5$ What is the limit of the sequence?
 - **A** $-\frac{9}{4}$ **B** $-\frac{16}{9}$ **C** $\frac{1}{27}$ **D** $\frac{9}{4}$
- 45. A sequence is defined by the recurrence relation $u_{n+1} = \frac{1}{7}u_n + 6$ with $u_0 = 0$ What is the limit of the sequence?
 - **A 7 B** $\frac{36}{7}$ **C** $\frac{1}{7}$ **D** $-\frac{1}{35}$
- 46. A sequence is defined by the recurrence relation $u_{n+1} = au_n \frac{3}{2}$ with $u_0 = 5$ Given that the limit of this sequence is 1, what is the value of a?
 - **A** $-\frac{1}{2}$ **B** $-\frac{1}{3}$ **C** $\frac{1}{3}$ **D** $\frac{1}{2}$

- 47. A function f is defined by $f(x) = \sqrt{x^2 4}$ For which range of values of $x \in R$ is f undefined?
 - **A** $-2 \le x \le 2$ **B** -2 < x < 2
 - $\begin{array}{c} \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \end{array} = \left\{ \begin{array}{c} x < 0 \end{array} \right.$
 - $\begin{array}{c} \mathbf{C} & x < 0 \\ \mathbf{D} & x > 0 \end{array}$
- 48. The expression $-x^2 + 6x 4$ can be written in the form $p (x+q)^2$. What is the value of p?
 - A -13
 - В -4
 - C 5
 - D 13
- 49. The expression $2x^2 8x$ can be written in the form $2(x+p)^2 q$. What is the value of q?
 - A 4
 - B 8
 - C 16
 - D 32
- 50. A parabola has equation $y = x^2 + 8x + 19$ What is the y-coordinate of the parabola's turning point?
 - A -4
 - В -3
 - С 3
 - D 15
- 51. A parabola has equation $y = (x + 2)^2 10$. Determine the coordinates and nature of its turning point.

	Coordinates	Nature
Α	(-2, -10)	minimum
В	(-2, -10)	maximum
С	(2, -10)	minimum
D	(2, -10)	maximum

52. Solve $x^2 - 7x + 10 < 0$ for x.

A2 < x < 5B $2 \le x \le 5$ Cx < 2, x > 5D $x \le 2, x \ge 5$

53. Solve $x^2 - 6x + 8 < 0$ for *x*.

Ax < 2, x > 4B $x \le 2, x \ge 4$ C2 < x < 4D $2 \le x \le 4$

54. Given that $x^2 + 2kx + 4k = 0$ has equal roots, what is the largest possible value of k?

A 0
B 4
C 8
D 16

55. Given that $2x^2 - 2x + 3k = 0$ has real roots, find the possible values of k.

56. The equation $kx^2 + 3x - 2 = 0$ has equal roots. What is the value of k?

 $A \qquad \frac{9}{8}$ $B \qquad -\frac{3}{8}$ $C \qquad -\frac{9}{8}$ $D \qquad \frac{1}{3}$

- 57. The polynomial $x^3 5x^2 + 12x + 12$ can be written in the form (x-2)q(x) + kwhere q(x) is a quadratic and k is a constant. What is the value of k?
 - A -40
 - B O
 - *C* 12
 - D 24

58. When $kx^3 + (k-2)x - 4$ is divided by x - 2, the remainder is 12. What is the value of k?

A $-\frac{6}{5}$ **B** $\frac{6}{5}$ **C 2 D** $\frac{10}{3}$

59. Given that x = 2 is a root of $2x^3 + kx^2 - 17x - 3 - k = 0$, what is the value of k?

- A -7
- B -5
- *C* 0
- D 7

60. Given that x = -2 is a root of $x^3 + 4x^2 - 59x - 126 = 0$, Find the other two roots.

- **A** x = 9, x = -7 **B** x = -9, x = 7 **C** x = -9, x = -7**D** x = 9, x = 7
- 61. Find the x-coordinate of the points of intersection of the parabola $y = x^2 x + 2$ and the line y = 6 4x
 - **A** x = -1, 4
 - B x = 1, -4
 - *C* x = 1, 4
 - D x = -1, -4

62. Find the largest value of k for which $\int_{0}^{k} 8x dx = 1$

 $A \qquad \frac{1}{8}$ $B \qquad \frac{1}{4}$ $C \qquad \frac{1}{\sqrt{8}}$ $D \qquad \frac{1}{2}$

63. Find the largest value of k for which $\int_{0}^{k} (2x-3)dx = 4$

- A 1 B 2
- B 2 C 4
- C 4 D 7
- 64. What is the value of $\int_{0}^{1} x^{\frac{3}{2}} dx$? A $\frac{2}{5}$
 - **A** $\frac{2}{5}$ **B** $\frac{1}{2}$ **C** $\frac{3}{2}$ **D** $\frac{5}{2}$
- 65. What is the value of $\int_{0}^{1} x^{\frac{1}{2}} dx$? A $\frac{1}{2}$ B $\frac{2}{3}$ C 1 D $\frac{3}{2}$

66. What is the value of $\int_{1}^{3} (x^2 - 4x + 3) dx$? A $-\frac{4}{3}$

- $\begin{array}{c} \mathsf{B} & \mathsf{O} \\ \mathsf{C} & \frac{2}{3} \end{array}$
- D 4

67. What is the value of
$$\int_{0}^{3} (4x^{2} + 3) dx$$

- A 24
- B 36
- C 39
- D 45

68. The diagram shows the area bounded by the curves $y = x^3 - 8x^2 + 16x + 7$ and $y = x^2 - 4x + 7$ between x = 0 and x = a.

Which of the following gives the value of the shaded area

A $\int_{0}^{a} (x^{3} - 9x^{2} + 20x) dx$ B $\int_{0}^{a} (x^{3} - 9x^{2} + 12x + 14) dx$ C $\int_{0}^{a} (-x^{3} + 9x^{2} - 20x) dx$ D $\int_{0}^{a} (x^{3} - 7x^{2} + 12x + 14) dx$

69. What is the value of $\cos(\frac{7\pi}{6})$?

$$A \qquad -\frac{\sqrt{3}}{2}$$
$$B \qquad -\frac{1}{2}$$
$$C \qquad \frac{1}{2}$$
$$D \qquad \frac{\sqrt{3}}{2}$$

$$A \qquad -\frac{3}{\sqrt{10}}$$
$$B \qquad -\frac{1}{\sqrt{10}}$$
$$C \qquad \frac{1}{\sqrt{10}}$$
$$D \qquad \frac{3}{\sqrt{10}}$$

71. The acute angle a is shown in the triangle.

	5		5	Ν
A	$\frac{2}{3}$			
В	$\frac{4}{3}$			$\sqrt{5}$
С	$\frac{4}{9}\sqrt{5}$			
D	$\frac{4}{6}\sqrt{5}$			2

72. Given that $\cos 2x = \frac{1}{8}, 0 < x < \frac{\pi}{2}$, what is the value of $\cos x$?

Α	1
	16
В	$\frac{3}{16}$
С	$\frac{1}{\sqrt{8}}$
D	$\frac{3}{4}$

73. What is the exact value of $1 - 2\sin^2(15^\circ)$?

Α	1
	2
В	$\frac{5}{9}$
	8
С	$\frac{\sqrt{3}}{2}$
	2 7
D	$\frac{7}{8}$

74. Given that $\cos 2x = \frac{7}{9}, 0 < x < \frac{\pi}{2}$, what is the value of $\sin x$?

- $A \qquad \frac{1}{9}$ $B \qquad \frac{1}{3}$ $C \qquad \frac{\sqrt{8}}{3}$ $D \qquad \frac{1}{\sqrt{3}}$
- 75. The angle x is shown in the triangle. What is the value of $\cos 2x$?

- **A** $\frac{5}{18}\sqrt{11}$ **B** $\frac{7}{18}$ **C** $\frac{4}{3}$ **D** $\frac{5}{6}$
- 76. The point (2, -3) lies on the circle with equation $x^2 + y^2 + 6x 2y + c = 0$ What is the value of c?
 - A -31
 - B -13
 - C -1
 - D 9
- 77. A circle has centre (2, 4) and passes through (-1, 1). What is the equation of the circle?

Α	$(x-2)^2 + (y-4)^2 = \sqrt{18}$
В	$(x-2)^2 + (y-4)^2 = 18$
С	$(x+2)^2 + (y+4)^2 = 18$
D	$(x+2)^2 + (y+4)^2 = 26$

- 78. The point P(-2, 4) lies on the circle with equation $x^2 + y^2 2x 2y 32 = 0$ What is the gradient of the tangent to the circle at P?
 - $\begin{array}{c} A & \frac{1}{3} \\ B & \frac{3}{5} \\ C & 1 \end{array}$
 - D 3
- 79. A circle has equation $(x+1)^2 + (y-2)^2 = 29$ What is the gradient of the tangent to the circle at the point(1, -3)?
 - $A \qquad \frac{2}{5}$ $B \qquad O$ $C \qquad -\frac{5}{2}$ $D \qquad -\frac{1}{2}$
- 80. A circle has equation $x^2 + y^2 2x 4y + 1 = 0$ Here are two statements about the circle:
 - I. The circle has a centre (-2, -4).
 - II. The circle has a radius of 1.

Which of the following are true?

- A neither statements are correct
- B only statement I is correct
- C only statement II is correct
- D both statements are correct

81. A circle has equation $x^2 + y^2 - 4x + 6y + 4 = 0$ Here are two statements about the circle:

- I. The circle has a centre (-2, 3).
- II. The circle has a radius of 3 units.

Which of the following are true?

- A neither statements are correct
- B only statement I is correct
- C only statement II is correct
- D both statements are correct

82. A circle has equation $x^2 + y^2 - ax + 2by + c = 0$. The centre of the circle is (-1, 4). What are the values of a and b?

Ь
-4
-2
-4
4

- 83. A circle has centre (2, -1) and has the y-axis as a tangent. What is the equation of the circle?
 - **A** $(x+2)^2 + (y-1)^2 = 4$
 - **B** $(x-2)^2 + (y+1)^2 = 4$
 - **C** $(x+2)^2 + (y-1)^2 = 1$
 - **D** $(x-2)^2 + (y+1)^2 = 1$
- 84. What is the largest range of values of k for which the equation $x^2 + y^2 6x + 4y + k = 0$ represents a circle?
 - **A** k < 52
 - **B** k < 13
 - C k > -13
 - D All real k

85. A vector v is given by $\begin{pmatrix} -3 \\ 2 \\ 6 \end{pmatrix}$. What is the length, in units, of 3v?

- A 7
- B 15
- C 21
- D 49

86. The point A has coordinates (9, 7, 2) and B(5, 5, -1). What is the value of $|\overrightarrow{AB}|$

- A $\sqrt{3}$
- B 3
- $C \qquad \sqrt{29}$
- $D \sqrt{21}$

- 87. What is the distance between the points (3, -1, -1) and (2, 7, -4)?
 - $\begin{array}{c} \mathbf{A} & \sqrt{86} \\ \mathbf{B} & \sqrt{74} \end{array}$
 - C 2
 - $D \sqrt{62}$

88. The point B has coordinates (-3, 10, -5) and $|\overrightarrow{AB}| = \begin{pmatrix} 3\\ 9\\ -5 \end{pmatrix}$.

What are the coordinates of point A?

- A (0, 1, -10)
- B (0, -1, -10)
- *C* (-6, 1, 0)
- D (6, -1, 0)
- 89. The vectors p and q are defined by p = 2i k and q = i + j + k. Find 2p - q in component form.

90. The vector *u* is given by $\begin{pmatrix} k \\ 2k \\ 2k \end{pmatrix}$ where *k* > 0 is a constant.

Given that u is a unit vector, what is the value of k?

- $A \qquad \frac{1}{9}$ $B \qquad \frac{1}{5}$ $C \qquad \frac{1}{\sqrt{5}}$ $D \qquad \frac{1}{3}$
- 91. ABCDE is a square based pyramid and X is the centre of the base.

Givent that
$$\overrightarrow{AC} = \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix}$$
 and $\overrightarrow{CE} = \begin{pmatrix} -2 \\ -2 \\ 5 \end{pmatrix}$, find \overrightarrow{XE}

92. Parallelogram OABC is shown.

The point D divides \overrightarrow{AB} in the ratio 3 : 1 Find \overrightarrow{CD} in terms of *a* and *c*.

- $\begin{array}{ll} \mathbf{A} & a \frac{1}{4}c \\ \mathbf{B} & a \frac{1}{3}c \end{array}$
- $\begin{array}{c} \mathbf{C} \\ \mathbf{C} \\ \frac{1}{4}c a \end{array}$
- **D** $\frac{1}{3}c a$
- 93. The point P has coordinates (4, -3, 7) and Q(7, -9, 4). The point R divides \overrightarrow{PQ} in the ratio 1 : 2 Find the components of \overrightarrow{PR}

A	$\begin{pmatrix} \frac{3}{2} \\ -3 \\ -\frac{3}{2} \end{pmatrix}$
В	$\begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$
С	$\begin{pmatrix} 2\\ -4\\ -2 \end{pmatrix}$
D	$\begin{pmatrix} -1\\2\\1 \end{pmatrix}$

94. The vectors $\begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix}$ and $\begin{pmatrix} k \\ 2 \\ -5 \end{pmatrix}$ are perpendicular. What is the value of k?

A -3 B 3 C $\frac{10}{3}$ D $\frac{8}{3}$ 95. The vectors $\begin{pmatrix} a \\ 1 \\ b \end{pmatrix}$ and $\begin{pmatrix} 0 \\ -2a \\ 3b \end{pmatrix}$ are perpendicular. Find an expression for a in terms of b.

- **A** $a = 3b^{2}$ **B** $a = \frac{3}{2}b^{2}$ **C** $a = \frac{3}{2}b^{2} - \frac{1}{2}$ **D** $a = 3b^{2} - 1$
- 96. For two vectors u and v, |u| = 4, |v| = 7 and u.v = 3. What is the value of u.(u + v)
 - A 7
 - B 12
 - C 19
 - D 44
- 97. Differentiate $2(4-x)^{-\frac{1}{2}}$ with respect to x.
 - **A** $(4-x)^{-1}$
 - **B** $-(4-x)^{-1}$
 - **C** $(4-x)^{-\frac{3}{2}}$
 - **D** $-(4-x)^{-\frac{3}{2}}$
- 98. What is the gradient of the tangent to the curve with equation $y = \cos 2x$ at the point where $x = \frac{\pi}{4}$
 - A -2
 - В -1
 - *C* 0
 - D 2

99. Given that $f(x) = 3\cos(2x)$, what is the value of $f'(\frac{\pi}{6})$?

A 3 B $-3\sqrt{3}$ C -3 D $\frac{3\sqrt{3}}{2}$ 100. Given that $f(x) = \frac{1}{2} \sin^2 x$, what is the value of $f'(\frac{\pi}{3})$?

- $-\frac{1}{2}$ $\sqrt{3}$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{4}$ Α В С D
- Differentiate $(6x2)^5$ with respect to x. 101.
 - $60x^9$ Α
 - $5(6x^2)^4$ В
 - $30(6x^2)^4$ С
 - $60x(6x^2)^4$ D
- A function is defined for $x \le 4$ by $f(x) = (8 2x)^{\frac{3}{2}}$. What is the value of f'(2)? 102.
 - -24 Α
 - -6 В
 - С 3
 - D 8

103. Find $\int (2x-5)^4 dx$

- **A** $8(2x-5)^3 + c$ **B** $4(2x-5)^3 + c$ **C** $\frac{1}{5}(2x-5)^5 + c$
- D $\frac{1}{10}(2x-5)^5 + c$
- 104. What is the value of $\int_0^{\pi} \sin x dx$?
 - -2 Α В 0 С 1
 - D 2

A $-\frac{1}{2}$ **B** -1 **C** $\log_4(\frac{16}{5})$ **D** $\log_4(\frac{16}{125})$

106. Solve $\log_a 5 + \log_a x = \log_a 20$ for x > 0

- **A** $x = \frac{1}{4}$
- **B** *x* = 4
- *C x* = 15
- **D** x = 100

107. The diagram shows the graph of $y = 3e^{kx}$

108. Solve $3\log_{a} 2 = \frac{1}{2}$ for *a*.

A a = 64 **B** a = 36 **C** $a = \frac{4}{9}$ **D** $a = \frac{1}{16}$

109. Solve simultaneously the equations $k \sin a^{\circ} = \sqrt{3}$ and $k \cos a^{\circ} = 1$ for k > 0 and $0 \le a \le 360$.

- **A** k = 2, a = 30 **B** k = 2, a = 60**C** $k = \sqrt{10}, a = 30$
- **D** $k = \sqrt{10}, a = 60$

110. Given that $\cos x - \sin x = \sqrt{2} \cos(x - \frac{7\pi}{4})$, what is the maximum value of $\cos x - \sin x$, and what is the value of x in the interval $0 \le x \le 2\pi$ at which it occurs?

	Maximum value	x
Α	1	0
В	$\sqrt{2}$	0
С	1	$\frac{7\pi}{4}$
D	$\sqrt{2}$	$\frac{7\pi}{4}$

Answers

1	2	3	4	5	6	7	8	9	10	11	12
С	А	D	D	С	В	A	С	В	D	A	С
13	14	15	16	17	18	19	20	21	22	23	24
С	A	В	В	С	В	A	D	A	D	D	A
25	26	27	28	29	30	31	32	33	34	35	36
Α	A	В	D	A	В	С	С	В	В	С	С
37	38	39	40	41	42	43	44	45	46	47	48
С	D	В	С	С	A	В	A	A	A	В	С
49	50	51	52	53	54	55	56	57	58	59	60
В	С	A	A	С	В	С	С	D	С	D	В
61	62	63	64	65	66	67	68	69	70	71	72
В	D	С	A	В	A	D	A	A	D	С	D
73	74	75	76	77	78	79	80	81	82	83	84
С	В	В	A	В	В	A	A	С	С	В	В
85	86	87	88	89	90	91	92	93	94	95	96
С	С	В	С	A	D	В	A	В	В	В	С
97	98	99	100	101	102	103	104	105	106	107	108
С	А	В	D	D	В	D	D	В	В	В	A
109	110										
В	D										