1. What is the distance, in units, between the points $(-1,2)$ and $(4,5)$?

A $\sqrt{8}$
B $\sqrt{16}$
C $\sqrt{34}$
D $\sqrt{58}$
2. What is the distance, in units, between the points (a, b) and $(-b, a)$

A $\sqrt{2} \sqrt{a^{2}+b^{2}}$
B $\sqrt{2}(a+b)$
C $\quad \sqrt{2}(\sqrt{a}+\sqrt{b})$
D $2 \sqrt{a^{2}+b^{2}}$
3. The line through the points $(-2,5)$ and $(7, a)$ has a gradient of 3 . What is the value of a A 8
B 22
C 28
D 32
4. The equation of the line $3 y=a x+1$ where $a \neq 0$ is a constant. Given that the line has a gradient of $\frac{7}{5}$, what is the value of a ?
A $-\frac{21}{5}$
B $-\frac{7}{5}$
C $\frac{7}{5}$
D $\frac{21}{5}$
5. The line with equation $y=-\frac{3}{a} x+4$, where $a \neq 0$ is a constant, is perpendicular to the line with equation $y=\frac{1}{2} x+1$. What is the value of a ?
A -6
B $-\frac{3}{2}$
C $\frac{3}{2}$
D 6
6. The line h passes through $(3,-2)$ and is parallel to the line with equation $y=\frac{1}{2} x+5$.

What is the equation of h
A $\quad x-2 y+1=0$
B $\quad x-2 y-7=0$
C $\quad x-2 y+7=0$
D $\quad x-2 y-5=0$
7. Find the equation of the line passing through $(6,-4)$ and is parallel to the line with equation $2 x-3 y-1=0$
A $\quad 2 x-3 y-24=0$
B $\quad 3 x+2 y-10=0$
C $2 x-y-16=0$
D $2 x-3 y-18=0$
8. A straight line has equation $y=-x+4$

What angle does the line make with thepositive direction of the x-axis?
A 45°
B 120°
C 135°
D 150°
9. Given that $(1,0)$ is the midpoint of $A(-3, a)$ and $B(b, 2)$, what are the values of a and b ?

	a	b
A	-2	4
B	-2	5
	2	-5
	4	-2

10. Triangle $A B C$ is shown.

Here are two statements about the lineBD
I. $B D$ is an altitude of triangle $A B C$
II. $B D$ is the perpendicular bisector of $A C$

Which of the following is true?
A neither statement is correct.
B only statement I is correct.
C only statement II is correct
D Both statements are correct
11. Triangle $A B C$ with vertices $A(-4,1), B(4,3)$ and $C(1,5)$ is shown. Point $M(0,2)$ is the midpoint of $A B$. What is the equation of the median through C ?
A $\quad 3 x-y+2=0$
B $\quad x-4 y+8=0$
C $\quad 4 x+y-2=0$

D $3 x-y-1=0$
12. Triangle $A B C$ with vertices $A(6,7), B(7,0)$ and $C(-1,-2)$ is shown.

The line through C and B Has gradient $\frac{1}{4}$. Find the equation of the altitude.
A $\quad 4 x+y-11=0$
B $\quad x-4 y+22=0$
C $\quad 4 x+y-31=0$
D $\quad 8 x-3 y-27=0$
13. What is the gradient of the straight line shown in the diagram?
A $\quad-\sqrt{3}$
B $-\frac{1}{2}$
C $-\frac{1}{\sqrt{3}}$
D $\frac{1}{\sqrt{3}}$

14. A line makes an angle of 60° with the positive direction of the x axis.

What is the gradient of the line?
A $\sqrt{3}$
B $\frac{\sqrt{3}}{2}$
C $\frac{1}{\sqrt{3}}$
D $\frac{1}{2}$
15. A function f is defined by $f(x)=\sqrt{x+2}$.

For which values of x is the function f undefined
A $\quad x>-2$
B $\quad x<-2$
C $x<-1$
D $x<0$
16. A function f is defined by $f(x)=\frac{x-3}{2 x^{2}-x-6}$

Which numbers must be excluded from the domain of f ?
A O only
B $\quad-\frac{3}{2}$ and 2 only
C 3 only
D $\quad-\frac{3}{2}, 2$ and 3 .
17. The graphs of $y=f(x)$ and $y=g(x)$ are shown in the diagram.

For which values of x is $f(x)<g(x)$
A $x>0$
B $\quad x<2$
C $0<x<2$
D $\quad x<0, x>2$

18. The diagram shows the graph of $y=\log _{10}(x+a)$

What is the value of a ?

A -3
B -2
C 2
D 3

19. Two functions f and g are defined by $f(x)=4 x+1$ and $g(x)=x^{2}-2$

Find an expression for $f(g(x))$

A $\quad 4 x^{2}-7$
B $\quad 4 x^{2}-1$
C $\quad 16 x^{2}+8 x-1$
D $\quad 4 x^{3}+x^{2}-8 x-2$
20. Two functions f and g are defined by $f(x)=2 x+1$ and $g(x)=x^{2}+x$

Find an expression for $g(f(x))$

A $\quad x^{2}+2 x+1$
B $\quad 2 x^{2}+2 x+1$
C $\quad 2 x^{2}+4 x+2$
D $4 x^{2}+6 x+2$
21. Two functions f and g are defined by $f(x)=\frac{3 x}{x+1}$ and $g(x)=x^{2}-1$

Find an expression for $f(g(x))$

A $3-\frac{3}{x^{2}}$
B $\frac{9 x^{2}}{x^{2}+2 x+2}$
C $3-\frac{1}{x^{2}}$
D $\frac{3}{x}$
22. A parabola has equation $y=x^{2}+6 x+2$

What are the coordinates of the parabola's turning point?
A $(3,-7)$
B $(-3,29)$
C $\quad(3,29)$
D $(-3,-7)$
23. What is the maximum value of $3-\sin \left(x+\frac{\pi}{2}\right)$, and the smallest value of $x \geq 0$ at which it occurs?

	Maximum value	x
A	3	0
B	3	$\frac{3 \pi}{2}$
C	4	0
	4	π

24. The curve with equation $y=k \cos (a x)+b$ is shown below.

What are the values of a and k ?

A	a	k
	1	3
B	1	6
	2	3
	2	7

25. What is the exact value of $\sin \left(\frac{4 \pi}{3}\right)$?

A $-\frac{\sqrt{3}}{2}$
B $-\frac{1}{2}$
C $\quad \frac{1}{2}$
D $\frac{\sqrt{3}}{2}$
26. A function f is defined by $f(x)=x^{3}+k x^{2}+2 x$.

Given that $f^{\prime}(2)=26$, what is the value of k

A 3
B $\frac{7}{2}$
C 5
D -3
27. A function f is defined by $f(x)=3 x^{3}+2 k x+9$.

Given that $f^{\prime}(-1)=13$, what is the value of k

A $-\frac{7}{2}$
B 2
C 5
D 11
28. Given that $f(x)=3 x^{3}+7 x+1$, find the rate of change of f when $x=2$

A 28
B 31
C 39
D 43
29. Given that $f(x)=\sqrt[3]{x}+2 x^{2}$, find the rate of change of f when $x=8$

A $32 \frac{1}{12}$
B $\quad 32 \frac{1}{6}$
C $\quad 32+3 \sqrt{2}$
D 130
30. Differentiate $\sqrt[3]{x^{2}}$ with respect to x.

A $\frac{3}{2} \sqrt{x}$
B $\quad \frac{2}{3 \sqrt[3]{x}}$
C $\quad \frac{2}{3} \sqrt[3]{x}$
D $\quad 2 \sqrt[3]{x}$
31. What is the gradient of the tangent to the curve $y=4 x^{3}+x^{2}+3$ at $x=2$?

A $\quad 24 \frac{2}{3}$
B 39
C 52
D 55
32. A curve has $\frac{d y}{d x}=x^{2}+5 x+4$

Find the x-values of the points on the curve where the tangent has a gradient of 4

A $\quad-4$ and -1
B 1 and 4
C $\quad-5$ and 0
D 0 and 5
33. A curve satisfying $\frac{d y}{d x}=4 x$ has a tangent at $x=3$.

What is the gradient of any line perpendicular to this tangent?
A 12
B $-\frac{1}{12}$
C $\quad \frac{1}{12}$
D $\quad-12$
34. A function is defined by $f(x)=2 x^{2}-9 x=4$

What is the largest range of x-values for which $f(x)$ is strictly increasing?

A $\quad x<\frac{9}{4}$
B $\quad x>\frac{9}{4}$
C $\quad \frac{1}{2}<x<4$
D $\quad x>\frac{1}{2}, x>4$
35. A function is defined by $f(x)=3 x^{2}-x=4$

What is the largest range of x-values for which $f(x)$ is strictly decreasing?

A $\quad x<0$
B $\quad x>0$
C $\quad x<\frac{1}{6}$
D $\quad x>\frac{1}{6}$
36. A curve has $\frac{d y}{d x}=x^{2}+x-6$. What are the x-values of the curve's stationary points?

A -3 and -2
B 3 and -2
C $\quad-3$ and 2
D 3 and 2
37. A curve has $\frac{d y}{d x}=x^{2}-4 x+4$, has a stationary point at $x=2$.

What is the nature of this stationary point?

A Maximum turning point
B Minimum turning point
C rising point of inflexion
D falling point of inflexion
38. A curve has $\frac{d y}{d x}=x^{2}-6 x-9$, has a stationary point at $x=-3$.

What is the nature of this stationary point?

A Maximum turning point
B Minimum turning point
C rising point of inflexion
D falling point of inflexion
39. A sequence is defined by the recurrence relation $U_{n+1}=a U_{n}+b$ where a and b are constants. Given that $U_{0}=4$ and $U_{1}=8$, find an expression for a in terms of b.

A $\quad a=\frac{1}{2}-\frac{1}{8} b$
B $\quad a=2-\frac{1}{4} b$
C $\quad a=\frac{1}{2}+\frac{1}{8} b$
D $\quad a=2+\frac{1}{4} b$
40. A sequence is defined by the recurrence relation $U_{n+1}=-3 U_{n}+7$ with $U_{0}=2$. What is the value U_{2} ?

A -1
B 1
C 4
D 10
41. A sequence is defined by the recurrence relation $U_{n+1}=\frac{1}{2} U_{n}+k$ with $U_{0}=k$.

Find an expression for U_{2} in terms of k.

A $\frac{3}{4} k$
B $\frac{3}{2} k$
C $\quad \frac{7}{4} k$
D $\quad \frac{5}{2} k$
42. A sequence is defined by the recurrence relation $U_{n+1}=\sqrt{5} U_{n}-1$ with $U_{0}=0$. What is the value U_{2} ?

A $\quad-\sqrt{5}-1$
B -1
C $\quad \sqrt{5}-2$
D $\quad-\sqrt{5}$
43. Two sequences are defined by $u_{n+1}=\frac{1}{2} u_{n}+7$ and

$$
v_{n+1}=-v_{n}+2 \text { with } u_{0}=-4 \text { and } v_{0}=10 .
$$

Here are two statements about the sequences:
I. u_{n} tends to a limit as $n \rightarrow \infty$
II. v_{n} tends to a limit as $n \rightarrow \infty$

Which of the following is true?
A neither statement is correct
B only statement I is correct
C only statement II is correct
D both statements are correct
44. A sequence is defined by the recurrence relation $u_{n+1}=\frac{1}{9} u_{n}-2$ with $u u_{0}=5$

What is the limit of the sequence?

A $-\frac{9}{4}$
B $-\frac{16}{9}$
C $\quad \frac{1}{27}$
D $\frac{9}{4}$
45. A sequence is defined by the recurrence relation $u_{n+1}=\frac{1}{7} u_{n}+6$ with $u_{0}=0$

What is the limit of the sequence?
A 7
B $\frac{36}{7}$
C $\frac{1}{7}$
D $\quad-\frac{1}{35}$
46. A sequence is defined by the recurrence relation $u_{n+1}=a u_{n}-\frac{3}{2}$ with $u_{0}=5$ Given that the limit of this sequence is 1 , what is the value of a ?
A $-\frac{1}{2}$
B $-\frac{1}{3}$
C $\frac{1}{3}$
D $\frac{1}{2}$
47. A function f is defined by $f(x)=\sqrt{x^{2}-4}$ For which range of values of $x \in R$ is f undefined?

A $\quad-2 \leq x \leq 2$
B $\quad-2<x<2$
C $\quad x<0$
D $\quad x>0$
48. The expression $-x^{2}+6 x-4$ can be written in the form $p-(x+q)^{2}$. What is the value of p ?

A -13
B -4
C 5
D 13
49. The expression $2 x^{2}-8 x$ can be written in the form $2(x+p)^{2}-q$. What is the value of q ?

A 4
B 8
C $\quad 16$
D 32
50. A parabola has equation $y=x^{2}+8 x+19$ What is the y-coordinate of the parabola's turning point?

A -4
B -3
C 3
D $\quad 15$
51. A parabola has equation $y=(x+2)^{2}-10$.

Determine the coordinates and nature of its turning point.

	Coordinates	Nature
A	$(-2,-10)$	minimum
B	$(-2,-10)$	maximum
C	$(2,-10)$	minimum
	$(2,-10)$	maximum

52. Solve $x^{2}-7 x+10<0$ for x.

A $2<x<5$
B $\quad 2 \leq x \leq 5$
C $\quad x<2, x>5$
D $\quad x \leq 2, x \geq 5$
53. Solve $x^{2}-6 x+8<0$ for x.

A $\quad x<2, x>4$
B $\quad x \leq 2, x \geq 4$
C $2<x<4$
D $2 \leq x \leq 4$
54. Given that $x^{2}+2 k x+4 k=0$ has equal roots, what is the largest possible value of k ?

A	0
B	4
C	8
D	16

55. Given that $2 x^{2}-2 x+3 k=0$ has real roots, find the possible values of k.

A $k \leq-\frac{1}{6}$
B $\quad k \geq-\frac{1}{6}$
C $\quad k \leq \frac{1}{6}$
D $\quad k \geq-\frac{1}{6}$
56. The equation $k x^{2}+3 x-2=0$ has equal roots. What is the value of k ?

A $\frac{9}{8}$
B $-\frac{3}{8}$
C $\quad-\frac{9}{8}$
D $\frac{1}{3}$
57. The polynomial $x^{3}-5 x^{2}+12 x+12$ can be written in the form $(x-2) q(x)+k$ where $q(x)$ is a quadratic and k is a constant.
What is the value of k ?

A -40
B 0
C 12
D 24
58. When $k x^{3}+(k-2) x-4$ is divided by $x-2$, the remainder is 12 . What is the value of k ?

A $-\frac{6}{5}$
B $\frac{6}{5}$
C 2
D $\frac{10}{3}$
59. Given that $x=2$ is a root of $2 x^{3}+k x^{2}-17 x-3-k=0$, what is the value of k ?

A	-7
B	-5
C	0
D	7

60. Given that $x=-2$ is a root of $x^{3}+4 x^{2}-59 x-126=0$, Find the other two roots.

A $\quad x=9, x=-7$
B $\quad x=-9, x=7$
C $\quad x=-9, x=-7$
D $\quad x=9, x=7$
61. Find the x-coordinate of the points of intersection of the parabola $y=x^{2}-x+2$ and the line $y=6-4 x$

A $\quad x=-1,4$
B $\quad x=1,-4$
C $\quad x=1,4$
D $\quad x=-1,-4$
62. Find the largest value of k for which $\int_{0}^{k} 8 x d x=1$

A $\frac{1}{8}$
B $\frac{1}{4}$
C $\quad \frac{1}{\sqrt{8}}$
D $\frac{1}{2}$
63. Find the largest value of k for which $\int_{0}^{k}(2 x-3) d x=4$

A 1
B 2
C 4
D 7
64. What is the value of $\int_{0}^{1} x^{\frac{3}{2}} d x$?

A $\frac{2}{5}$
B $\frac{1}{2}$
C $\frac{3}{2}$
D $\frac{5}{2}$
65. What is the value of $\int_{0}^{1} x^{\frac{1}{2}} d x$?

A $\frac{1}{2}$
B $\frac{2}{3}$
C $\quad 1$
D $\frac{3}{2}$
66. What is the value of $\int_{1}^{3}\left(x^{2}-4 x+3\right) d x$?

A $-\frac{4}{3}$
B 0
C $\frac{2}{3}$
D 4
67. What is the value of $\int_{0}^{3}\left(4 x^{2}+3\right) d x$?

A 24
B 36
C 39
D 45
68. The diagram shows the area bounded by the curves $y=x^{3}-8 x^{2}+16 x+7$ and $y=x^{2}-4 x+7$ between $x=0$ and $x=a$.

Which of the following gives the value of the shaded area
A $\quad \int_{0}^{a}\left(x^{3}-9 x^{2}+20 x\right) d x$
B $\quad \int_{0}^{a}\left(x^{3}-9 x^{2}+12 x+14\right) d x$
C $\quad \int_{0}^{a}\left(-x^{3}+9 x^{2}-20 x\right) d x$

D $\quad \int_{0}^{a}\left(x^{3}-7 x^{2}+12 x+14\right) d x$
69. What is the value of $\cos \left(\frac{7 \pi}{6}\right)$?

A $-\frac{\sqrt{3}}{2}$
B $-\frac{1}{2}$
C $\quad \frac{1}{2}$
D $\frac{\sqrt{3}}{2}$
70. Given that $\sqrt{10} \cos (x-a)=\cos x+3 \sin x$, what is the value of $\sin a$?

A $-\frac{3}{\sqrt{10}}$
B $-\frac{1}{\sqrt{10}}$
C $\quad \frac{1}{\sqrt{10}}$
D $\frac{3}{\sqrt{10}}$
71. The acute angle a is shown in the triangle.

A $\frac{2}{3}$
B $\frac{4}{3}$
C $\quad \frac{4}{9} \sqrt{5}$
D $\quad \frac{4}{6} \sqrt{5}$

72. Given that $\cos 2 x=\frac{1}{8}, 0<x<\frac{\pi}{2}$, what is the value of $\cos x$?

A $\frac{1}{16}$
B $\frac{3}{16}$
C $\quad \frac{1}{\sqrt{8}}$
D $\frac{3}{4}$
73. What is the exact value of $1-2 \sin ^{2}\left(15^{\circ}\right)$?

A $\frac{1}{2}$
B $\frac{5}{8}$
C $\frac{\sqrt{3}}{2}$
D $\frac{7}{8}$
74. Given that $\cos 2 x=\frac{7}{9}, 0<x<\frac{\pi}{2}$, what is the value of $\sin x$?

A $\frac{1}{9}$
B $\frac{1}{3}$
C $\frac{\sqrt{8}}{3}$
D $\frac{1}{\sqrt{3}}$
75. The angle x is shown in the triangle.

What is the value of $\cos 2 x$?

A $\frac{5}{18} \sqrt{11}$
B $\frac{7}{18}$
C $\frac{4}{3}$
D $\frac{5}{6}$
76. The point $(2,-3)$ lies on the circle with equation $x^{2}+y^{2}+6 x-2 y+c=0$ What is the value of c ?

A -31
B -13
C -1
D 9
77. A circle has centre $(2,4)$ and passes through $(-1,1)$.

What is the equation of the circle?
A $\quad(x-2)^{2}+(y-4)^{2}=\sqrt{18}$
B $(x-2)^{2}+(y-4)^{2}=18$
C $\quad(x+2)^{2}+(y+4)^{2}=18$
D $(x+2)^{2}+(y+4)^{2}=26$
78. The point $P(-2,4)$ lies on the circle with equation $x^{2}+y^{2}-2 x-2 y-32=0$ What is the gradient of the tangent to the circle at P ?

A $\frac{1}{3}$
B $\frac{3}{5}$
C 1
D 3
79. A circle has equation $(x+1)^{2}+(y-2)^{2}=29$

What is the gradient of the tangent to the circle at the point $(1,-3)$?
A $\frac{2}{5}$
B 0
C $-\frac{5}{2}$
D $-\frac{1}{2}$
80. A circle has equation $x^{2}+y^{2}-2 x-4 y+1=0$

Here are two statements about the circle:
I. The circle has a centre $(-2,-4)$.
II. The circle has a radius of 1 .

Which of the following are true?

A neither statements are correct
B only statement I is correct
C only statement II is correct
D both statements are correct
81. A circle has equation $x^{2}+y^{2}-4 x+6 y+4=0$

Here are two statements about the circle:
I. The circle has a centre $(-2,3)$.
II. The circle has a radius of 3 units.

Which of the following are true?
A neither statements are correct
B only statement I is correct
C only statement II is correct
D both statements are correct
82. A circle has equation $x^{2}+y^{2}-a x+2 b y+c=0$. The centre of the circle is $(-1,4)$. What are the values of a and b ?

	a	b
A	2	-4
B	-1	-2
C	-2	-4
D	2	4

83. A circle has centre $(2,-1)$ and has the y-axis as a tangent.

What is the equation of the circle?
A $(x+2)^{2}+(y-1)^{2}=4$
B $\quad(x-2)^{2}+(y+1)^{2}=4$
C $\quad(x+2)^{2}+(y-1)^{2}=1$
D $\quad(x-2)^{2}+(y+1)^{2}=1$
84. What is the largest range of values of k for which the equation $x^{2}+y^{2}-6 x+4 y+k=0$ represents a circle?

A $k<52$
B $k<13$
C $\quad k>-13$
D All real k
85. A vector v is given by $\left(\begin{array}{r}-3 \\ 2 \\ 6\end{array}\right)$. What is the length, in units, of $3 v$?

A 7
B 15
C 21
D 49
86. The point A has coordinates $(9,7,2)$ and $B(5,5,-1)$. What is the value of $|\overrightarrow{A B}|$

A $\sqrt{3}$
B 3
C $\sqrt{29}$
D $\sqrt{21}$
87. What is the distance between the points $(3,-1,-1)$ and $(2,7,-4)$?

A $\sqrt{86}$
B $\sqrt{74}$
C 2
D $\quad-\sqrt{62}$
88. The point B has coordinates $(-3,10,-5)$ and $|\overrightarrow{A B}|=\left(\begin{array}{c}3 \\ 9 \\ -5\end{array}\right)$.

What are the coordinates of point A ?
A $\quad(0,1,-10)$
B $\quad(0,-1,-10)$
C $(-6,1,0)$
D $\quad(6,-1,0)$
89. The vectors \boldsymbol{p} and \boldsymbol{q} are defined by $p=2 i-k$ and $q=i+j+k$.

Find $2 p-q$ in component form.
A $\quad\left(\begin{array}{r}3 \\ -1 \\ -5\end{array}\right)$
B $\quad\left(\begin{array}{r}3 \\ -1 \\ -4\end{array}\right)$
C $\quad\left(\begin{array}{c}1 \\ -1 \\ -4\end{array}\right)$
$D \quad\left(\begin{array}{c}3 \\ -3 \\ -3\end{array}\right)$
90. The vector u is given by $\left(\begin{array}{c}k \\ 2 k \\ 2 k\end{array}\right)$ where $k>0$ is a constant.

Given that u is a unit vector, what is the value of k ?

A $\frac{1}{9}$
B $\frac{1}{5}$
C $\quad \frac{1}{\sqrt{5}}$
D $\frac{1}{3}$
91. $A B C D E$ is a square based pyramid and X is the centre of the base.

Givent that $\overrightarrow{A C}=\left(\begin{array}{l}4 \\ 4 \\ 0\end{array}\right)$ and $\overrightarrow{C E}=\left(\begin{array}{c}-2 \\ -2 \\ 5\end{array}\right)$, find $X \vec{E}$

A $\quad\left(\begin{array}{c}-4 \\ -4 \\ 5\end{array}\right)$

B $\quad\left(\begin{array}{l}0 \\ 0 \\ 5\end{array}\right)$
C $\quad\left(\begin{array}{l}2 \\ 2 \\ 5\end{array}\right)$
D $\quad\left(\begin{array}{l}4 \\ 4 \\ 5\end{array}\right)$
92. Parallelogram $O A B C$ is shown.

The point D divides $\overrightarrow{A B}$ in the ratio $3: 1$ Find $\overrightarrow{C D}$ in terms of a and c.

A $a-\frac{1}{4} c$
B $a-\frac{1}{3} c$
C $\frac{1}{4} c-a$
D $\frac{1}{3} c-a$
93. The point P has coordinates $(4,-3,7)$ and $Q(7,-9,4)$.

The point R divides $\overrightarrow{P Q}$ in the ratio $1: 2$
Find the components of $\overrightarrow{P R}$
$A \quad\left(\begin{array}{c}\frac{3}{2} \\ -3 \\ -\frac{3}{2}\end{array}\right)$
B $\quad\left(\begin{array}{c}1 \\ -2 \\ -1\end{array}\right)$
$C \quad\left(\begin{array}{c}2 \\ -4 \\ -2\end{array}\right)$
D $\quad\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)$
94. The vectors $\left(\begin{array}{c}3 \\ -1 \\ 7\end{array}\right)$ and $\left(\begin{array}{c}k \\ 2 \\ -5\end{array}\right)$ are perpendicular. What is the value of k ?

A -3
B 3
C $\quad \frac{10}{3}$
D $\frac{8}{3}$
95. The vectors $\left(\begin{array}{l}a \\ 1 \\ b\end{array}\right)$ and $\left(\begin{array}{c}0 \\ -2 a \\ 3 b\end{array}\right)$ are perpendicular. Find an expression for a in terms of b.

A $\quad a=3 b^{2}$
B $\quad a=\frac{3}{2} b^{2}$
C $\quad a=\frac{3}{2} b^{2}-\frac{1}{2}$
D $\quad a=3 b^{2}-1$
96. For two vectors u and $v,|u|=4,|v|=7$ and $u . v=3$. What is the value of $u .(u+v)$

A 7
B 12
C 19
D 44
97. Differentiate $2(4-x)^{-\frac{1}{2}}$ with respect to x.

A $(4-x)^{-1}$
B $\quad-(4-x)^{-1}$
C $(4-x)^{-\frac{3}{2}}$
D $\quad-(4-x)^{-\frac{3}{2}}$
98. What is the gradient of the tangent to the curve with equation $y=\cos 2 x$ at the point where $x=\frac{\pi}{4}$

A -2
B -1
C 0
D 2
99. Given that $f(x)=3 \cos (2 x)$, what is the value of $f^{\prime}\left(\frac{\pi}{6}\right)$?

A 3
B $\quad-3 \sqrt{3}$
C $\quad-3$
D $\frac{3 \sqrt{3}}{2}$
100. Given that $f(x)=\frac{1}{2} \sin ^{2} x$, what is the value of $f^{\prime}\left(\frac{\pi}{3}\right)$?

A $-\frac{1}{2}$
B $\sqrt{3}$
C $\frac{\sqrt{3}}{2}$
D $\frac{\sqrt{3}}{4}$
101. Differentiate $(6 x 2)^{5}$ with respecr to x.

A $\quad 60 x^{9}$
B $\quad 5\left(6 x^{2}\right)^{4}$
C $\quad 30\left(6 x^{2}\right)^{4}$
D $\quad 60 x\left(6 x^{2}\right)^{4}$
102. A function is defined for $x \leq 4$ by $f(x)=(8-2 x)^{\frac{3}{2}}$. What is the value of $f^{\prime}(2)$?
A -24

B -6
C 3
D 8
103. Find $\int(2 x-5)^{4} d x$

A $\quad 8(2 x-5)^{3}+c$
B $\quad 4(2 x-5)^{3}+c$
C $\quad \frac{1}{5}(2 x-5)^{5}+c$
D $\quad \frac{1}{10}(2 x-5)^{5}+c$
104. What is the value of $\int_{0}^{\pi} \sin x d x$?

A -2
B 0
C 1
D 2
105. Simplify $\log _{4} 8+\log _{4} 2-3 \log _{5} 5$

A $-\frac{1}{2}$
B $\quad-1$
C $\quad \log _{4}\left(\frac{16}{5}\right)$
D $\quad \log _{4}\left(\frac{16}{125}\right)$
106. Solve $\log _{a} 5+\log _{a} x=\log _{a} 20$ for $x>0$

A $\quad x=\frac{1}{4}$
B $\quad x=4$
C $\quad x=15$
D $x=100$
107. The diagram shows the graph of $y=3 e^{k x}$

What is the value of k ?

A $\frac{3}{2 e}$
B $\quad \frac{1}{4} \log _{e} 6$
C $\quad \frac{1}{4} \log _{e} 15$

D $\quad \frac{1}{18} \log _{e} \frac{4}{3}$
108. Solve $3 \log _{a} 2=\frac{1}{2}$ for a.

A $a=64$
B $\quad a=36$
C $\quad a=\frac{4}{9}$
D $\quad a=\frac{1}{16}$
109. Solve simultaneously the equations $k \sin a^{o}=\sqrt{3}$ and $k \cos a^{o}=1$ for $k>0$ and $0 \leq a \leq 360$.

A $k=2, a=30$
B $\quad k=2, a=60$
C $\quad k=\sqrt{10}, a=30$
D $\quad k=\sqrt{10}, a=60$
110. Given that $\cos x-\sin x=\sqrt{2} \cos \left(x-\frac{7 \pi}{4}\right)$, what is the maximum value of $\cos x-\sin x$, and what is the value of x in the interval $0 \leq x \leq 2 \pi$ at which it occurs?

	Maximum value	x
A	1	0
B	$\sqrt{2}$	0
C	1	$\frac{7 \pi}{4}$
		$\frac{7 \pi}{4}$

Answers

1	2	3	4	5	6	7	8	9	10	11	12
C	A	D	D	C	B	A	C	B	D	A	C
13	14	15	16	17	18	19	20	21	22	23	24
C	A	B	B	C	B	A	D	A	D	D	A
25	26	27	28	29	30	31	32	33	34	35	36
A	A	B	D	A	B	C	C	B	B	C	C
37	38	39	40	41	42	43	44	45	46	47	48
C	D	B	C	C	A	B	A	A	A	B	C
49	50	51	52	53	54	55	56	57	58	59	60
B	C	A	A	C	B	C	C	D	C	D	B
61	62	63	64	65	66	67	68	69	70	71	72
B	D	C	A	B	A	D	A	A	D	C	D
73	74	75	76	77	78	79	80	81	82	83	84
C	B	B	A	B	B	A	A	C	C	B	B
85	86	87	88	89	90	91	92	93	94	95	96
C	C	B	C	A	D	B	A	B	B	B	C
97	98	99	100	101	102	103	104	105	106	107	108
C	A	B	D	D	B	D	D	B	B	B	A
109	110										
B	D										

