HIGHER MATHEMATICS

OBJECTIVE QUESTIONS

AUGUST 2007

Items 1-72 These cover the full range of Examinable Content where appropriate.

Items 73-144 These are a repeat of 1-72.

Cat. no	ans	Syll.	Code	item no	Cat. no	ans	Syll.	Code	item no	Cat. no	ans	Syll.	Code	item no
1	D	А	1	204	49	D	G	10	93	97	С	С	4	76
2	С	А	2	244	50	В	G	11	357	98	С	С	6	940
3	В	А	3	924	51	А	G	12	37	99	А	С	7	124
4	D	А	4	11	52	D	G	16	305	100	В	С	8	261
5	С	А	5	926	53	С	G	17	90	101	А	С	11	201
6	D	А	6	1105	54	D	G	18	955	102	D	С	12	1078
7	С	А	7	273	55	А	G	19	19	103	В	С	13	943
8	С	А	10	1073	56	D	G	20	351	104	А	С	14	1312
9	А	А	11	1237	57	В	G	21	958	105	D	С	15	1480
10	D	А	12	1364	58	А	G	22	959	106	А	С	16	255
11	А	А	13	1160	59	D	G	24	315	107	А	С	17	1149
12	В	А	15	1240	60	В	G	25	961	108	В	С	18	1015
13	С	А	16	289	61	С	G	26	962	109	В	С	20	1167
14	В	А	17	1242	62	С	G	27	162	110	В	С	21	126
15	D	А	18	932	63	D	G	28	116	111	В	С	22	214
16	А	А	19	1115	64	В	G	29	102	112	D	С	23	194
17	D	А	21	33	65	С	Т	1	67	113	D	G	1	977
18	С	А	28	66	66	С	Т	3	64	114	С	Т	3	74
19	А	А	31	198	67	В	Т	4	224	115	С	G	3	1263
20	С	А	32	325	68	D	Т	5	131	116	А	G	4	1203
21	В	А	33	249	69	В	Т	7	148	117	D	G	5	132
22	D	С	1	71	70	С	Т	8	20	118	D	G	6	1047
23	А	С	2	937	71	D	Т	9	393	119	А	G	7	1283
24	D	С	3	378	72	В	Т	12	967	120	В	G	9	232
25	В	С	4	21	73	А	А	1	1325	121	D	G	10	1025
26	D	С	6	324	74	А	А	2	1070	122	С	G	11	953
27	В	С	7	48	75	А	А	3	1433	123	С	G	12	1028
28	С	С	8	141	76	D	А	4	108	124	D	G	16	954
29	С	С	11	47	77	В	А	5	1359	125	В	G	17	231
30	С	С	12	53	78	В	А	6	1462	126	D	G	18	978
31	С	С	13	154	79	С	А	7	1361	127	В	G	19	1051
32	А	С	14	354	80	В	А	10	1337	128	С	G	20	957
33	С	С	15	1479	81	А	A	11	1322	129	В	G	21	994
34	В	С	16	185	82	С	А	12	1440	130	А	G	22	991
35	С	С	17	166	83	С	А	13	1365	131	А	G	24	960
36	В	С	18	46	84	А	А	15	1366	132	С	G	25	988
37	D	С	20	61	85	В	Α	16	1318	133	Α	G	26	1058
38	В	С	21	45	86	Α	Α	17	1343	134	Α	G	27	963
39	С	С	22	26	87	А	А	18	1344	135	В	G	28	1193
40	В	C	23	81	88	Α	A	19	1244	136	B	G	29	982
41	D	G	1	946	89	D	А	21	257	137	С	Т	1	112
42	В	G	2	175	90	D	А	28	80	138	А	Т	3	1041
43	Α	G	3	2	91	Α	Α	31	1117	139	С	Т	4	964
44	В	G	4	372	92	Α	Α	32	349	140	D	Т	5	363
45	В	G	5	104	93	В	А	33	388	141	В	Т	7	145
46	D	G	6	973	94	А	С	1	1246	142	А	Т	8	984
47	С	G	7	949	95	Α	С	2	938	143	С	Т	9	1260
48	В	G	9	83	96	А	С	3	1080	144	В	Т	12	981

- 1. For which real value of x is the function f given by $f(x) = \frac{1}{\sqrt{1-x^2}}$ defined on the set of real numbers ?
 - A all x except 1 and -1
 - B x < 1 only
 - C x > 1, x < -1 only
 - D -1 < x < 1 only
- 2. Which of the graphs shown below is most likely to be the graph with equation $y = 3x^2 2x + 4$?

3. The diagram shows part of the graph of a function with equation y = f(x).

Which of the following diagrams shows the graph with equation y = f(3-x)?

 $f(x) = 2x^2 - 4$ and g(x) = 1 - x define functions on the set of real numbers. 4.

What is the value of f(g(2))?

- А 4 В 3 0
- C 0 D -2
- When $2x^2 12x + 13$ is written in the form 5. $2(x+q)^2 + r$, what is the value of r?
 - А 13 B 1 C -5 D -13
- A function f is given by $f(x) = (x-2)^2 3$. 6. The function g is given by $g(x) = \frac{1}{f(x) + 10}$.

Which of the following statements about the stationary value of g is true ?

- А minimum value of g is 7
- В maximum value of g is 7
- minimum value of g is $\frac{1}{7}$ С
- maximum value of g is $\frac{1}{7}$ D

7. The diagram shows the graph of the function *f* where $f(x) = p(x-q)^2 + r$. The line x = 0 is an axis of symmetry of the curve. Which of the following is true about *p*, *q* and *r*?

- A p > 0, q > 0, r > 0
- B p > 0, q = 0, r < 0
- C p < 0, q = 0, r > 0
- D p < 0, q < 0, r = 0
- 8. The population of hamsters in a breeding centre increases by 5% during each month. At the end of each month the breeder sells 30 hamsters. If u_n represents the hamster population at the beginning of a month, find an expression for u_{n+1}.
 - A $u_{n+1} = 1 \cdot 5u_n + 30$

B
$$u_{n+1} = 5u_n - 30$$

- $C \qquad u_{n+1} = 1 \cdot 05 u_n 30$
- D $u_{n+1} = 0.95u_n + 30$
- 9. A sequence is defined by the recurrence relation $u_{n+1} = au_n + b$ and $u_0 = 4$. Express u_2 in terms of *a* and *b*.
 - A $u_2 = 4a^2 + ab + b$
 - B $u_2 = 4 + 2b$
 - $\mathbf{C} \qquad u_2 = 4a^2 + a^2b$
 - **D** $u_2 = 2a + b$

- 10. A sequence is defined by the recurrence relation $u_{n+1} = 0.5u_n + 2$ and $u_0 = 8$. Here are two statements about this sequence:
 - (1) A limit exists for this sequence.
 - (2) No term in the sequence is greater than 8.

Which of the following is true ?

- A neither statement is correct
- B only statement (1) is correct
- C only statement (2) is correct
- D both statements are correct
- 11. A sequence is defined by the recurrence relation $u_{n+1} = \frac{1}{3}u_n 7$ and $u_0 = -2$. What is the limit of this sequence as $n \to \infty$?
 - $A -\frac{21}{2}$ $B -\frac{7}{3}$ $C -\frac{1}{18}$ $D -\frac{1}{24}$
- 12. A parabola has equation $y = x^2 + 6x 8$. At what value of x does the minimum point of the parabola occur ?
 - A -8 B -3 C 0 D 3
- 13. Find the solution of $x^2 + x 12 < 0$.
 - A x < -4 or x > 3B x < -3 or x > 4C -4 < x < 3D -3 < x < 4

- 14. Here are two statements about the equation $(x-3)^2 = 17$:
 - (1) the roots of the equation are real
 - (2) the roots of the equation are equal

Which of the following is true ?

- A neither statement is correct
- B only statement (1) is correct
- C only statement (2) is correct
- D both statements are correct
- 15. The equation $x^2 + 2x + p = 0$ has no real roots. What is the range of values of p ?
 - A p < -1
 - $\mathbf{B} \quad p < 0$
 - $C \quad p > 0$
 - D p > 1
- 16. The roots of a quadratic equation are -1 and p. Which of the following could be the quadratic equation ?
 - A $x^{2} + (1-p)x p = 0$
 - **B** $x^2 (1+p)x + p = 0$
 - C $x^{2} + (1+p)x + p = 0$
 - D $x^{2} + (p-1)x p = 0$

17. If x-1 is a factor of $x^3 - 6x^2 + px - 6$, what is the value of p?

A -6 B -1 C 1 D 11 18. If $\log(x) = 2\log(y) - 3\log(z)$, find an expression for x in terms of y and z.

A
$$x = 2y - 3z$$

B
$$x = \frac{2y}{3z}$$

C
$$x = \frac{y^2}{z^3}$$

D
$$x = 2y + \frac{z}{3}$$

19. Given that
$$\log_a(64) = \frac{3}{2}$$
, what is the value of *a* ?

 $\begin{array}{rcl}
A & 16 \\
B & 42 \frac{2}{3} \\
C & 96 \\
D & 512
\end{array}$

20. Given that $\log_{10}(y) = 2\log_{10}(x) + \log_{10}(3)$, express y in terms of x.

- A y = 2x + 3B y = 6xC $y = 3x^2$ D $y = 3 \times 2^x$
- 21. The diagram shows the graph of $\log_{10}(y)$ plotted against *x*. The graph is a straight line through the origin with gradient 2.

What is the equation of this line ?

 $\begin{aligned} A & y &= 2x \\ B & y &= 10^{2x} \\ C & y &= 10^{x^2} \\ D & y &= x^2 \end{aligned}$

22. If $f(x) = 4x^3 + 5$, what is the value of f'(2)?

> Α 22 В 26

- C D 37
- 48

23. If
$$f(x) = 6x^3 - 2x^{-\frac{1}{2}}$$
 find $f'(x)$.

A
$$18x^{2} + x^{-\frac{3}{2}}$$

B $2x^{2} + 4x^{\frac{1}{2}}$
C $6x^{2} - x^{-\frac{3}{2}}$
D $18x^{2} + x^{\frac{1}{2}}$

24. Given that
$$f(x) = \frac{x^2 + 1}{x}$$
, $x \neq 0$, find $f'(x)$.

2*x* А 2x + 1В С 1 D $1 - \frac{1}{x^2}$

The tangent to the curve with equation $y = 2x^2 - 1$ is drawn at the point where x = 0. 25. What is the gradient of this tangent ?

Α -1В 0 C D 1 2

- The function f is defined by $f(x) = 4x^3 x^4$, where x is a real number. 26. What is the rate of change of *f* with respect to *x* at x = -1?
 - А -6
 - В -5 С 5
 - D 16
- 27. The graph of y = f(x) is shown with stationary points at x = 0.75, x = 1.5 and x = 3.

Here are two statements about f'(x):

f'(1) < 0(1) (2) f'(2) < 0f(x) (3, 6) (0.75, 4)

Which of the following is true?

- А neither statement is correct
- В only statement (1) is correct
- С only statement (2) is correct
- D both statements are correct
- $f(x) = ax^2 2x 5$ has a stationary value where x = 3. 28. What is the value of *a* ?
 - А -1
 - В 0
 - $\frac{1}{3}$ С $\frac{11}{9}$ D

- 29. The diagram shows the graphs of two functions, *f* and *g*. Here are two statements about the functions in the interval $a \le x \le b$:
 - (1) Function f is differentiable for all values of x
 - (2) Function g is differentiable for all values of x.

Which of the following is true?

- A neither statement is correct
- B only statement (1) is correct
- C only statement (2) is correct
- D both statements are correct

31. Find
$$\int \left(1 - x^{-\frac{3}{2}}\right)$$

A $2x^{-\frac{1}{2}} + c$
B $x + 2x^{-\frac{1}{2}} + c$
C $x - 2x^{\frac{1}{2}} + c$

D
$$x - 2x^{\frac{3}{2}} + c$$

32.

Find
$$\int \left(x^4 + \frac{1}{x^4} \right) dx$$

A
$$\frac{x^{5}}{5} - \frac{1}{3x^{3}} + c$$

B $4x^{3} - \frac{4}{x^{5}} + c$
C $\frac{x^{5}}{5} + \frac{1}{5x^{5}} + c$
D $\frac{x^{5}}{5} + \frac{1}{4x^{3}} + c$

33. What is the value of
$$\int_{-1}^{3} 3x^2 dx$$
?

20 24 A B C D 28 32

- 34. Here are two statements about the numerical value of the shaded area shown in the diagram:
 - (1) Shaded area = $2 \int_{0}^{1} x \, dx$

(2) Shaded area =
$$\int_{-1}^{1} x \, dx$$
.

Which is of the following is true ?

- A neither statement is correct
- B only statement (1) is correct
- C only statement (2) is correct
- D both statements are correct

35. The diagram shows the curves with equations $y = x^2$ and $y = 4 - x^2$.

Which of the following integrals gives the shaded area ?

A
$$\int_{0}^{4} (4-2x^{2}) dx.$$

B $\int_{-2}^{2} (4-2x^{2}) dx.$
C $\int_{-\sqrt{2}}^{\sqrt{2}} (4-2x^{2}) dx.$
D $\int_{0}^{\sqrt{2}} (2x^{2}-4) dx.$

36. If
$$\frac{dy}{dx} = 2x + 1$$
 and $y = 3$ when $x = 1$, express y in terms of x.

A
$$y = x^2$$

B $y = x^2 + x + 1$
C $y = 2$
D $y = x^2 + 2$

37. Given that
$$f(x) = \cos(3x^2 + 5)$$
, find $f'(x)$.
A $3\sin(3x^2 + 5)$

- $\mathbf{B} \qquad 3\cos(3x^2+5)$
- C $-\sin(6x)$

$$\mathbf{D} \qquad -6x\sin\left(3x^2+5\right)$$

38. If
$$f(x) = (2x^2 - 1)^3$$
, find $f'(x)$.
A $\frac{1}{16x}(2x^2 - 1)^4$
B $12x(2x^2 - 1)^2$

C
$$48x^5$$

D
$$48x^2$$

39. Find
$$\int (4x-1)^2 dx.$$

A
$$\frac{1}{3}(2x^2 - x)^3 + c$$

B $12(4x - 1)^3 + c$
C $\frac{1}{12}(4x - 1)^3 + c$
D $(2x^2 - x)^2 + c$

41. What is the distance between the points (-2, 5, 3) and (4, -1, 1)?

- $\begin{array}{rrrr} A & 6 \\ B & 10 \\ C & 2\sqrt{14} \\ D & 2\sqrt{19} \end{array}$
- 42. The line joining the points (-2, -3) and (6, k) has gradient $\frac{2}{3}$. What is the value of k?
 - $A \qquad \frac{14}{3}$ $B \qquad \frac{7}{3}$ $C \qquad -\frac{1}{3}$ $D \qquad -9$
- 43. A straight line passes through the points P(-5, -2) and Q(-2, -1). What is the equation of the straight line which passes through P and is perpendicular to PQ ?
 - $A \qquad y+2 = -3(x+5)$
 - B $y-2 = -\frac{3}{7}(x-5)$
 - C $y-1 = -\frac{3}{7}(x-2)$
 - D $y-1 = -\frac{1}{3}(x-2)$

44. The equation ax + y + 4a = 0 defines a set of straight lines for different values of *a*, where $a \neq 0$.

Here are two statements about this set of lines:

- (1) All cut the *x*-axis at the same point
- (2) They are parallel

Which of the following is true ?

- A neither statement is correct
- B only statement (1) is correct
- C only statement (2) is correct
- D both statements are correct
- 45. P and Q are the points (2, 3) and (-1, 4). What is the gradient of a line perpendicular to PQ ?
 - $\begin{array}{rrrr} A & -\frac{8}{7} \\ B & 3 \\ C & 5 \\ D & 7 \end{array}$
- 46. P is the point (a, -2) and Q is (0, b). M(1, 2) is the midpoint of PQ. What are the values of a and b?

	а	b
А	1	-6
В	1	6
С	2	-6
D	2	6

- 47. Triangle OPQ has vertices at 0(0, 0), P(5, 3) and Q(1, -7). OS is a median. What are the coordinates of S?
 - $\begin{array}{lll} A & (-5,-2) \\ B & (3,-5) \\ C & (3,-2) \\ D & (2,5) \end{array}$

- 48. A circle has equation $x^2 + y^2 = 4 4x + 2y$. What is the radius of this circle ?
 - A 2
 - B 3
 - C 4
 - D 5
- 49. PQ is a diameter of a circle.P and Q have coordinates (3, 2) and (7, 2) respectively.What is the equation of this circle ?
 - A $(x-3)^2 + (y-2)^2 = 16$
 - B $(x-4)^2 + y^2 = 2$
 - C $(x+5)^2 + (y+2)^2 = 2$
 - D $(x-5)^2 + (y-2)^2 = 4$

50. The following diagrams each show a circle with centre Q(*a*, *b*) and radius 5 units, cutting the *x* and *y* axes in P and R respectively. In which diagram would the gradient of the tangent at P equal $-\frac{4}{3}$?

The line with equation y = k intersects the circle with equation $x^2 + y^2 = 4$ in at least one 51. point.

What is the range of values of *k* ?

 $-2 \le k \le 2$ Α В $-4 \le k \le 4$ C $k \ge 2, k \le -2$ $k \ge 4, \ k \le -4$ D

52. Given that
$$u = \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$$
 and $v = \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}$, what is the magnitude of $(u - v)$?

- А 1 B $\sqrt{20}$ $\sqrt{32}$ С
- $\sqrt{34}$ D
- P, Q and R are points such that $\overrightarrow{PQ} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, $\overrightarrow{PR} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ and R is (0, 2, 1). 53.

What are the coordinates of Q ?

Α (-1, 3, 2)(-1, -1, 0)В С (1, 1, 0)(2, 0, 1)D

- 54. The vector \boldsymbol{u} is given by $\boldsymbol{u} = \frac{1}{4}\boldsymbol{i} + p\boldsymbol{k}$ where p > 0. If \boldsymbol{u} is a unit vector, what is the value of p?
 - $A \qquad \frac{3}{4}$ $B \qquad 1$ $C \qquad \frac{\sqrt{17}}{16}$ $D \qquad \frac{\sqrt{15}}{4}$

		(-	- 2)		(6)	
55.	For what value of z are the vectors		3	and	-9	parallel ?
			6)		(z)	

- A -18 B -6 C 14
- D 54

56. Given that
$$\boldsymbol{p} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, \ \boldsymbol{q} = \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix}, \text{ and } \boldsymbol{r} = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}, \text{ what are}$$

the components of p-q+3r?

$$A = \begin{pmatrix} -3 \\ 0 \\ -2 \end{pmatrix}$$
$$B = \begin{pmatrix} 5 \\ 0 \\ -8 \end{pmatrix}$$
$$C = \begin{pmatrix} 0 \\ 0 \\ 54 \end{pmatrix}$$
$$D = \begin{pmatrix} -3 \\ -2 \\ 10 \end{pmatrix}$$

57. The diagram shows a square PQRS where $\overrightarrow{SP} = u$ and $\overrightarrow{SR} = v$.

Express \overrightarrow{ST} in terms of u and v.

- A $\overrightarrow{ST} = \boldsymbol{u} + \frac{1}{2}\boldsymbol{v}$ B $\overrightarrow{ST} = \frac{1}{2}\boldsymbol{u} + \frac{1}{2}\boldsymbol{v}$ C $\overrightarrow{ST} = \boldsymbol{u} - \frac{1}{2}\boldsymbol{v}$ D $\overrightarrow{ST} = \frac{1}{2}\boldsymbol{u} - \frac{1}{2}\boldsymbol{v}$
- 58. PQRS,KLMN is a cuboid as shown in the diagram. $\overrightarrow{SN} = u, \overrightarrow{SR} = v$ and $\overrightarrow{SP} = w$. T is the midpoint of KR.

Express $\overrightarrow{\text{KT}}$ in terms of u, v and w.

- A $\overrightarrow{\mathrm{KT}} = -\frac{1}{2}\boldsymbol{u} + \frac{1}{2}\boldsymbol{v} \frac{1}{2}\boldsymbol{w}$
- $\mathbf{B} \qquad \overrightarrow{\mathbf{KT}} = -\boldsymbol{u} + \boldsymbol{v} \boldsymbol{w}$
- $\mathbf{C} \qquad \overrightarrow{\mathbf{KT}} = \frac{1}{2}\boldsymbol{u} + \frac{1}{2}\boldsymbol{v} + \frac{1}{2}\boldsymbol{w}$

D KT =
$$u - v + w$$

59. The points A(1, 4, 2), B(3, 2, z) and C(7, y, -1) are collinear. What are the values of y and z?

	у	Z.
А	2	-3
В	2	1
С	-2	-3
D	-2	1

60. The point N divides the line LM in the ratio 3 : 1. (4)

L has coordinates (-1, 1, 0) and $\overrightarrow{LM} = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$.

What are the coordinates of N ?

$$A \qquad \left(\frac{3}{2}, 2, 1\right)$$
$$B \qquad \left(2, 4, 3\right)$$
$$C \qquad \left(\frac{5}{2}, 4, 3\right)$$
$$D \qquad \left(5, 3, 4\right)$$

61. The components of vectors \boldsymbol{u} and \boldsymbol{v} are given by $\boldsymbol{u} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$ and $\boldsymbol{v} = \begin{pmatrix} 3 \\ -1 \\ -5 \end{pmatrix}$.

What is the value of *u*.*v* ?

A	-10
В	- 3
С	3
D	5

The vectors $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} -5 \\ 2 \\ z \end{pmatrix}$ are perpendicular. 62. What is the value of z ?

> -1 Α В 0 $\frac{1}{4}$ С 4 D

		(1)		$\left(0\right)$	
63.	What is the angle between the vectors	1	and	1	?
		(-1)		(1)	

A	$\frac{\pi}{6}$
В	$\frac{\pi}{4}$
С	$\frac{\pi}{3}$
D	$\frac{\pi}{2}$

What is the value of (i+2j)(j+2k)? 64.

A 0 B 2 C 5 D 9

65. Here are two statements about a stationary value for the function $f(x) = 4 \sin x - 2$:

- (1) *f* has a stationary value when $x = \frac{\pi}{3}$
- (2) f has a stationary value when $x = \frac{\pi}{2}$

Which of the following is true?

- A neither statement is correct
- B only statement (1) is correct
- C only statement (2) is correct
- D both statements are correct

66. What is the exact value of
$$\sin \frac{2\pi}{3} + \sin \frac{7\pi}{3}$$
?

- $\begin{array}{ccc} A & 0 \\ B & 1 \\ C & \sqrt{3} \\ D & 3 \end{array}$
- 67. The diagram shows the graph of a trigonometric function.

Which of the following could be the equation of the graph?

A
$$y = 1 + \sin x^\circ$$

- **B** $y = 1 \sin x^{\circ}$
- $\mathbf{C} \qquad y = 2 \cos x^{\circ}$
- $D \qquad y = 2\cos x^\circ 1$

- 68. What is the minimum value of $4\cos\left(x-\frac{\pi}{3}\right)+6$?
 - A 10
 - B 9
 - C 5 D 2
- 69. Given that $3\cos x^\circ + 4\sin x^\circ = 5\cos(x 53 \cdot 1)^\circ$, which of the following equations has a solution when x is a real number ?
 - $(1) \quad 3\cos x^\circ + 4\sin x^\circ = 2$
 - (2) $3\cos x^{\circ} + 4\sin x^{\circ} = 8$.
 - A neither equation has a solution
 - B only equation (1) has a solution
 - C only equation (2) has a solution
 - D both equations have a solution

70. If
$$\sin x^\circ = \frac{4}{5}$$
 and $0 < x < 90$, what is the exact value of $\sin 2x^\circ$?

 $A \qquad \frac{17}{25}$ $B \qquad \frac{8}{10}$ $C \qquad \frac{24}{25}$ $D \qquad \frac{6}{5}$

71. The diagram shows an isosceles triangle with lengths as shown.

Express sin $2t^{\circ}$ in terms of *p*, *q* and *r*.

A $\sin 2t^\circ = \frac{2q^2}{r^2}$ B $\sin 2t^\circ = \frac{2q}{r}$ C $\sin 2t^\circ = \frac{2p}{r}$ D $\sin 2t^\circ = \frac{2pq}{r^2}$

72. If $\sqrt{3} \cos x + \sin x = k \cos x \cos p + k \sin x \sin p$, where k > 0, what is the value of k?

- A 1 B 2 C 3
- D 4
- 73. A function f is defined by $f(x) = 5 + 2\cos 3x$, where x is a real number. What is the range of f?
 - A $3 \le f(x) \le 7$
 - B $5 \le f(x) \le 7$
 - C $5 \le f(x) \le 11$
 - D $-1 \le f(x) \le 11$

- 74. The graph with equation $y = (x-4)^2 + k$ passes through the point (3, 9). What are the coordinates of the stationary point of the graph ?
 - A (4, 8) B (4, 9)
 - C (4, 10)
 - D (4, 11)

75. The diagram shows sketches of y = f(x) and y = kf(x) + c.

What are the values of k and c?

	k	С
А	-1	2
В	-1	-2
С	1	2
D	1	-2

- 76. f(x) = 2x 1 and g(x) = 2x + 1 are functions defined on the set of real numbers. Find an expression for f(g(x)).
 - A $f(g(x)) = 4x^2 1$
 - **B** $f(g(x)) = 4x^2$
 - C f(g(x)) = 4x
 - $D \qquad f(g(x)) = 4x + 1$

77. When $x^2 + 8x + 5$ is expressed in the form $(x + a)^2 + b$, what is the value of b?

- A -59 B -11 C 0 D 5
- 78. A function f is given by $f(x) = 4 2\cos 3x$ on a suitable domain. What is the minimum value of f?
 - A 1
 - B 2
 - C 6
 - D 7
- 79. The diagram shows part of the graph of a cubic function.

What is the equation of this graph?

- A $y = 3(x+2)^2(x-1)$
- B $y = (x+2)(x-1)^2$

C
$$y = 3(x+2)(x-1)^2$$

D y = (x+2)(x-1)(x+1)

80. A fish farm starts with a stock of 5000 fish. Each Friday 30% of the fish are removed for sale and it is then restocked with 400 new fish. Let u_n represent the number of fish after restocking *n* times.

What is the recurrence relation that describes the situation after restocking ?

- A $u_{n+1} = 0 \cdot 3u_n + 400$ and $u_0 = 5000$
- B $u_{n+1} = 0.7u_n + 400$ and $u_0 = 5000$
- C $u_{n+1} = 0.3(u_n + 400)$ and $u_0 = 5000$
- D $u_{n+1} = 0 \cdot 7(u_n + 400)$ and $u_0 = 5000$
- 81. A sequence is defined by the recurrence relation $u_{n+1} = 3u_n 7$ and $u_0 = 1$.

What is the value of u_2 ?

- A -19 B -11 C -4 D -1
- 82. A sequence is generated by the recurrence relation $2u_{n+1} = ku_n + 7$. What is the largest range of k for which the sequence has a limit ?
 - A -0.5 < k < 0.5B -1 < k < 1C -2 < k < 2D 0 < k < 3
- 83. A sequence is defined by the recurrence relation $u_{n+1} = 0 \cdot 6u_n + k$ and $u_0 = 3$.

As $n \to \infty$, the limit of this sequence is 5.

What is the value of *k* ?

84. The diagram shows the graph of a parabola.

What is the equation of this graph?

- A $y = \frac{1}{2}x^2 + \frac{1}{2}x 6$
- $\mathbf{B} \qquad y = x^2 + x 12$
- C $y = \frac{1}{2}x^2 \frac{1}{2}x 6$
- D $y = 6x^2 + 6x 72$

85. What is the solution of 2(x-3)(x+5) > 0?

- A 2 < x < 5
- B x < -5, x > 3
- C -5 < x < 3
- D x < -3, x > 5
- 86. The function g is given by $g(x) = 4x^2 12x + 9$. Which condition describes the nature of the roots of g(x) = 0?
 - A Equal roots
 - B Exactly three distinct roots
 - C Exactly two distinct roots
 - D No real roots

87. The diagram shows part of the graph of a parabola with equation $y = px^2 + qx + r$. The *x*-axis is a tangent to the parabola.

What is the relationship between p, q and r?

A $q^2 = 4 pr$

B
$$q^2 > 4 pr$$

$$C q^2 < 4 pr$$

$$\mathbf{D} \qquad q^2 = -4\,pr$$

What is the equation of this graph?

- A y = 2(x-2)(x-1)(x+3)
- B y = 12(x-2)(x-1)(x+3)
- C y = -2(x-3)(x+1)(x+2)
- D y = 12(x-3)(x+1)(x+2)

What is the remainder on dividing the polynomial $5x^3 - 4x + 8$ by x - 2? 89.

- -24 А
- В 0 8
- C D 40
- What is the value of $\frac{\log_3(8)}{\log_3(2)}$? 90.
 - $\log_3(4)$ А $\log_3(6)$ В C D 4 3

91. If
$$\log_9(x) = \frac{1}{4}$$
, what is the value of x ?

$$A \qquad \sqrt{3}$$
$$B \qquad \frac{9}{4}$$
$$C \qquad \left(\frac{1}{4}\right)^9$$
$$D \qquad \frac{3}{2}$$

Given that $\log_{10}(x) = y \log_{10}(3) + 1$, express x in terms of y. 92.

- $x = 10 \times 3^{y}$ А
- $x = 30^{10 y}$ В
- x = 3y + 10С
- $x = y^3 + 10$ D

- 93. Given that $y = kn^x$ where k and n are constants, what would you plot in order to get a straight line graph ?
 - A *x* against *y*
 - B $x \text{ against } \log(y)$
 - C $\log(x)$ against y
 - D $\log(x)$ against $\log(y)$

94. Given that $f(x) = 2x^3 - 8x$, what is the value of f'(-1)?

 $\begin{array}{rrrr} A & -2 \\ B & 0 \\ C & 4\frac{1}{2} \\ D & 6 \end{array}$

95. If
$$f(x) = 4x^{-\frac{1}{2}}$$
, what is the value of $f'(4)$?

 $\begin{array}{rrrr} A & -\frac{1}{4} \\ B & \frac{1}{4} \\ C & 2 \\ D & 4 \end{array}$

96. If $f(x) = 3x^2(2x^3 + 4x - 1)$, find f'(x).

- A $30x^4 + 36x^2 6x$
- B $36x^3 + 24x$
- C $30x^4 + 12x^3 3x^2$
- D $x^{6} 3x^{4} x^{3}$
- 97. At a point P on the curve $y = 6 3x^2$, the gradient is 6. What is the *x*-coordinate of P ?
 - A -102 B -3 C -1 D 6

- 98. A function *f* is defined by $f(x) = (x-2)^3$. What is the rate of change of *f* with respect to *x* at x = 3?
 - A 0 B 1 C 3 D 19
 - _____
- 99. Which of the functions shown satisfies the conditions f'(x) < 0 for x < 0 and f'(x) > 0 for x > 0, where x is a real number and $x \neq 0$?

100. A function f is given by f(x) = (x-1)(x+5). f has a stationary value when x = a.

What is the value of *a* ?

A -5 B -2 C 0 D 1

101. Which of the following could represent a function f such that f(0) = 0, f(1) = 0, f'(0) = 1and f'(1) = 0?

102. The graph of a function f passes through the point (1, 5).

If
$$f(x) = \int 3x^2 dx$$
, find an explanation for $f(x)$.

A
$$f(x) = x^{3} - 1$$

B $f(x) = 6x + 5$
C $f(x) = x^{3} + 5$
D $f(x) = x^{3} + 4$

103. If
$$f'(x) = \frac{1}{\sqrt[4]{x^3}}$$
, what is $f(x)$?

A
$$f(x) = \frac{1}{4}x^{\frac{1}{4}} + c$$

B $f(x) = 4x^{\frac{1}{4}} + c$
C $f(x) = -\frac{4}{7}x^{-\frac{7}{4}} + c$
D $f(x) = \frac{3}{4}x^{-\frac{7}{4}} + c$

104. Find
$$\int \frac{1}{5\sqrt{x}} dx$$
.

A
$$\frac{2}{5}x^{\frac{1}{2}} + c$$

B $\frac{5}{2}x^{\frac{1}{2}} + c$
C $-\frac{1}{10}x^{-\frac{3}{2}} + c$
D $\frac{1}{10}x^{-\frac{3}{2}} + c$

105. What is the value of
$$\int_{0}^{3} (3x^{2} + 4x) dx ?$$

A 22
B 31
C 39
D 45

106. In the diagram area P = 5 sq. units and area Q = 3 sq. units. Here are two statements relating to this diagram:

(1)
$$\int_{0}^{3} f(x) dx = 8$$

(2)
$$\int_{0}^{3} f(x) dx = 3$$

$$\int_{2}^{2} f(x) dx^{2}$$

Which of the following is true ?

- A neither statement is correct
- B only statement (1) is correct
- C only statement (2) is correct
- D both statements are correct

107. The graphs of functions f and g are shown in the diagram.

Which of the following gives the area of the shaded section ?

A
$$\int_{1}^{12} (g(x) - f(x)) dx$$

B $\int_{1}^{12} (f(x) - g(x)) dx$
C $\int_{2}^{7} (g(x) - f(x)) dx$
D $\int_{2}^{7} (f(x) - g(x)) dx$

- 108. A curve passes through the point (2, 3). At every point on the curve $\frac{dy}{dx} = 6x^2$. What is the equation of the curve ?
- A $y = 18x^{3} 141$ B $y = 2x^{3} - 13$ C $y = 2x^{3}$ D y = 12x - 21109. If $y = \sin 3x - \cos x$, what is $\frac{dy}{dx}$?

A
$$-3\cos 3x - \sin x$$

- B $3\cos 3x + \sin x$
- $C \qquad \cos 3x \sin x$
- D $3\cos 2x + \sin x$

110. If
$$f(x) = (x^3 + 7)^2$$
, find $f'(x)$.

A
$$\frac{1}{3}(x^3 + 7)^3$$

B $6x^2(x^3 + 7)$
C $2(3x^2 + 7)$
D $6x^2$

111. Find
$$\int (4x+1)^{-\frac{1}{2}} dx$$

A $2(2x^{2}+1)^{\frac{1}{2}} + c$
B $\frac{1}{2}(4x+1)^{\frac{1}{2}} + c$
C $\frac{1}{4}(4x+1)^{\frac{1}{2}} + c$
D $-\frac{8}{3}(4x+1)^{\frac{-3}{2}} + c$

112. Find
$$\int_{0}^{\pi} (1 + \cos x) dx.$$

A 1
B $\pi - 2$
C 2
D π

113. The point P(7, 6) lies on a circle with centre (-5, 1) as shown in the diagram.

What is the length of the diameter ?

А	$2\sqrt{53}$ units
В	$2\sqrt{111}$ units
С	$2\sqrt{157}$ units
D	26 units

114. What is the exact value of
$$\tan \frac{7\pi}{6}$$
?

$$A - \sqrt{3}$$
$$B - \frac{\sqrt{3}}{2}$$
$$C - \frac{1}{\sqrt{3}}$$
$$D - \sqrt{3}$$

- 115. A line L is parallel to the line with equation 4x + 2y = 6 and passes through the point (-3, 1). What is the equation of L ?
 - A y 1 = -2(x 3)
 - $\mathbf{B} \qquad y-1 = 4(x-3)$
 - $C \qquad y-1 = -2(x+3)$
 - D y + 3 = -2(x 1)
- 116. The lines with the equations ax 2y + 5 = 0 and 3x + y 4 = 0 are parallel. What is the value of *a* ?
 - $\begin{array}{rrr} A & -6 \\ B & -2 \\ C & -\frac{1}{3} \\ D & 3 \end{array}$
- 117. A line L has equation x + 3y + 7 = 0. What is the gradient of a line perpendicular to L ?
 - A $-\frac{4}{3}$ B -1C 1 D 3

118. A straight line passes through the points G, M and H where G = (-2, 5) and M = (4, -3). M is the midpoint of GH. What are the coordinates of H ?

- 119. P and Q have coordinates (4, -7) and (-2, 5) respectively. The perpendicular bisector of PQ has a gradient of $\frac{1}{2}$.

What is the equation of the perpendicular bisector of PQ ?

- A 2y = x 3
- B y = -2x + 1
- C y = 2x + 3
- D 2y = -x 1

- 120. Q is the centre of the circle with equation $x^2 + y^2 + 2x 4y 15 = 0$ and R(3, 4) lies on the circumference. What is the gradient of QR ?
 - $A \quad \frac{1}{8}$ $B \quad \frac{1}{2}$ $C \quad 1$ $D \quad \frac{8}{5}$
- 121. The diagram shows a circle with the *y*-axis as a tangent. M and N have coordinates (0, -8) and (10, -8) and angle MKN equals 90°.

What is the equation of the circle passing through M, K and N?

- A $(x+5)^2 + (y-8)^2 = 100$
- **B** $(x-10)^2 + (y+8)^2 = 100$

C
$$(x+5)^2 + (y-8)^2 = 5$$

D $(x-5)^2 + (y+8)^2 = 25$

The point P(-3, 4) lies on the circle $x^2 + y^2 = 25$ as shown in the diagram. 122.

What is the gradient of the tangent at P?

The line with the equation y = 2x intersects the circle with equation $x^2 + y^2 = 1$ at the 123. point T.

What is the *x*-coordinate of T ?

124. What is the magnitude of the vector v = -2i + 5j + k?

 $\begin{array}{ccc} A & 3 \\ B & 4 \\ C & \sqrt{21} \\ D & \sqrt{30} \end{array}$

125. P is the point (1,2,3), \overrightarrow{PR} represents the vector $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ and \overrightarrow{RQ} represents the vector $\begin{pmatrix} 3\\1\\2 \end{pmatrix}$.

What are the coordinates of Q ?

126. Vector **p** has components
$$\begin{pmatrix} \frac{2}{5} \\ \frac{\sqrt{5}}{5} \\ a \end{pmatrix}$$
, where $a > 0$.

If **p** is a unit vector, what is possible value of a ?

A
$$\frac{3-\sqrt{5}}{5}$$

B
$$\frac{9}{25}$$

C
$$\frac{3}{5}$$

D
$$\frac{4}{5}$$

127. A vector \boldsymbol{u} has components $\begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix}$.

What are the components of a unit vector parallel to \boldsymbol{u} ?

128. Vector \boldsymbol{u} and \boldsymbol{v} are given by $\boldsymbol{u} = 2\boldsymbol{i} + \boldsymbol{k}$ and $\boldsymbol{v} = \boldsymbol{i} - 3\boldsymbol{j} + 4\boldsymbol{k}$.

What are the components of vector 2u - v?

129. The diagram shows a trapezium PQRS. PS is parallel to QR and |PS| = 3|QR|.

 \overrightarrow{PQ} and \overrightarrow{PS} represent vectors a and b respectively.

Express \overrightarrow{SR} in terms of *a* and *b*.

A $\overrightarrow{SR} = a$ B $\overrightarrow{SR} = a - \frac{2}{3}b$ C $\overrightarrow{SR} = -a + \frac{4}{3}b$ D $\overrightarrow{SR} = a - 4b$ 130. OABC, DEFG is a cuboid where A is the point (5, 0, 0) and F is (5, 3, 4), as shown in the diagram.

What are the components of \overrightarrow{AG} ?

131. The diagram shows three collinear points P, Q and R where $3 \overrightarrow{PQ} = 2 \overrightarrow{PR}$.

What is the ratio in which Q divides PR?

- A 2:1 B 3:1
- C 3:2
- D 5:3

132. A is the point (1,4,-2) and
$$\overrightarrow{AB} = \begin{pmatrix} -1 \\ -5 \\ 7 \end{pmatrix}$$
.

If $\overrightarrow{AC} = 3 \overrightarrow{AB}$, what are the coordinates of C?

- 133. Vectors \boldsymbol{u} and \boldsymbol{v} are defined by $\boldsymbol{u} = \boldsymbol{i} + 2\boldsymbol{j} 4\boldsymbol{k}$ and $\boldsymbol{v} = 3\boldsymbol{i} + 2\boldsymbol{k}$. What is the value of $\boldsymbol{u}.\boldsymbol{v}$?
 - A -5 B -1 C 0 D 3
- 134. Vectors u and v are given u = 2i j + 5k and v = 3i + pj k. If u and v are perpendicular, what is the value of p?
 - A 1
 - B 4
 - C 7
 - D 8

135. Vectors *a* and *b* are inclined at an angle of *t* radians to each other, as shown in the diagram.

If $\boldsymbol{a}.\boldsymbol{b} = 2$ and $|\boldsymbol{a}| = |\boldsymbol{b}| = \sqrt{3}$ units, what is the value of $\cos t$?

- 136. Two vectors, \boldsymbol{a} and \boldsymbol{b} , are perpendicular and $|\boldsymbol{a}| = 2$ units, $|\boldsymbol{b}| = 3$ units. What is the value of $\boldsymbol{a}.(\boldsymbol{a}+\boldsymbol{b})$?
 - A 0
 - B 4
 - C 7
 - D 10

137. Which of the four graphs is most likely to show the graph of $y = \cos 2x^\circ$ for $0 \le x \le 360$?

138. If $f(x) = 1 + \cos x$, what is the value of $f'\left(\frac{2\pi}{3}\right)$?

$$A - \frac{\sqrt{3}}{2}$$
$$B - \frac{1}{2}$$
$$C - \frac{1}{2}$$
$$D - \frac{1}{\sqrt{3}}$$

139. The diagram shows part of the graph whose equation is of the form $y = a \sin bx$.

What is the equation of this graph?

A $y = -3\sin\frac{1}{2}x$

B
$$y = 3\sin\frac{1}{2}x$$

$$C \qquad y = -3\sin 2x$$

D
$$y = 3\sin 2x$$

140. The maximum value of $1 - \cos\left(x - \frac{\pi}{6}\right)$, $0 \le x < 2\pi$ occurs when x = t.

What is the value of *t* ?

A = 0 $B = \frac{\pi}{6}$ $C = \frac{2\pi}{3}$ $D = \frac{7\pi}{6}$

141. What is the solution of the equation
$$\sqrt{3} \sin x = -\cos x$$

where $0 \le x \le \frac{3\pi}{2}$?

A
$$\frac{2\pi}{3}$$

B $\frac{5\pi}{6}$
C $\frac{7\pi}{6}$
D $\frac{4\pi}{3}$

142. Expand
$$\cos\left(x+\frac{\pi}{4}\right)$$
.

- A $\cos\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\cos x \frac{1}{\sqrt{2}}\sin x$ B $\cos\left(x + \frac{\pi}{4}\right) = \cos x + \frac{1}{\sqrt{2}}$ C $\cos\left(x + \frac{\pi}{4}\right) = \cos x \frac{1}{\sqrt{2}}$ D $\cos\left(x + \frac{\pi}{4}\right) = \frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x$

- The diagram shows a right-angled triangle with side lengths of 2, $\sqrt{21}$ and 5. 143.

What is the exact value of $\sin 2a$?

 $\frac{4}{5}$ A $\frac{17}{25}$ $\frac{4\sqrt{21}}{25}$ В С $\frac{2\sqrt{21}}{5}$ D

144. *k* and *a* are given by $k \sin a = 1$ and $k \cos a = 1$ where k > 0 and $0 \le a \le \frac{\pi}{2}$.

What are the values of *k* and *a* ?

	k	а
A	$\sqrt{2}$	0
В	$\sqrt{2}$	$\frac{\pi}{4}$
С	2	0
D	2	$\frac{\pi}{4}$