HIGHER MATHEMATICS

OBJECTIVE QUESTIONS

AUGUST 2007

Items 1-72

These cover the full range of Examinable Content where appropriate.

Items 73-144

These are a repeat of 1-72.

$\begin{gathered} \text { Cat. } \\ \text { no } \end{gathered}$	ans	Syll.	Code	item no	$\begin{gathered} \text { Cat. } \\ \text { no } \end{gathered}$	ans	Syll.	Code	item no	$\begin{gathered} \text { Cat. } \\ \text { no } \end{gathered}$	ans	Syll.	Code	item no
1	D	A	1	204	49	D	G	10	93	97	C	C	4	76
2	C	A	2	244	50	B	G	11	357	98	C	C	6	940
3	B	A	3	924	51	A	G	12	37	99	A	C	7	124
4	D	A	4	11	52	D	G	16	305	100	B	C	8	261
5	C	A	5	926	53	C	G	17	90	101	A	C	11	201
6	D	A	6	1105	54	D	G	18	955	102	D	C	12	1078
7	C	A	7	273	55	A	G	19	19	103	B	C	13	943
8	C	A	10	1073	56	D	G	20	351	104	A	C	14	1312
9	A	A	11	1237	57	B	G	21	958	105	D	C	15	1480
10	D	A	12	1364	58	A	G	22	959	106	A	C	16	255
11	A	A	13	1160	59	D	G	24	315	107	A	C	17	1149
12	B	A	15	1240	60	B	G	25	961	108	B	C	18	1015
13	C	A	16	289	61	C	G	26	962	109	B	C	20	1167
14	B	A	17	1242	62	C	G	27	162	110	B	C	21	126
15	D	A	18	932	63	D	G	28	116	111	B	C	22	214
16	A	A	19	1115	64	B	G	29	102	112	D	C	23	194
17	D	A	21	33	65	C	T	1	67	113	D	G	1	977
18	C	A	28	66	66	C	T	3	64	114	C	T	3	74
19	A	A	31	198	67	B	T	4	224	115	C	G	3	1263
20	C	A	32	325	68	D	T	5	131	116	A	G	4	1203
21	B	A	33	249	69	B	T	7	148	117	D	G	5	132
22	D	C	1	71	70	C	T	8	20	118	D	G	6	1047
23	A	C	2	937	71	D	T	9	393	119	A	G	7	1283
24	D	C	3	378	72	B	T	12	967	120	B	G	9	232
25	B	C	4	21	73	A	A	1	1325	121	D	G	10	1025
26	D	C	6	324	74	A	A	2	1070	122	C	G	11	953
27	B	C	7	48	75	A	A	3	1433	123	C	G	12	1028
28	C	C	8	141	76	D	A	4	108	124	D	G	16	954
29	C	C	11	47	77	B	A	5	1359	125	B	G	17	231
30	C	C	12	53	78	B	A	6	1462	126	D	G	18	978
31	C	C	13	154	79	C	A	7	1361	127	B	G	19	1051
32	A	C	14	354	80	B	A	10	1337	128	C	G	20	957
33	C	C	15	1479	81	A	A	11	1322	129	B	G	21	994
34	B	C	16	185	82	C	A	12	1440	130	A	G	22	991
35	C	C	17	166	83	C	A	13	1365	131	A	G	24	960
36	B	C	18	46	84	A	A	15	1366	132	C	G	25	988
37	D	C	20	61	85	B	A	16	1318	133	A	G	26	1058
38	B	C	21	45	86	A	A	17	1343	134	A	G	27	963
39	C	C	22	26	87	A	A	18	1344	135	B	G	28	1193
40	B	C	23	81	88	A	A	19	1244	136	B	G	29	982
41	D	G	1	946	89	D	A	21	257	137	C	T	1	112
42	B	G	2	175	90	D	A	28	80	138	A	T	3	1041
43	A	G	3	2	91	A	A	31	1117	139	C	T	4	964
44	B	G	4	372	92	A	A	32	349	140	D	T	5	363
45	B	G	5	104	93	B	A	33	388	141	B	T	7	145
46	D	G	6	973	94	A	C	1	1246	142	A	T	8	984
47	C	G	7	949	95	A	C	2	938	143	C	T	9	1260
48	B	G	9	83	96	A	C	3	1080	144	B	T	12	981

1. For which real value of x is the function f given by $f(x)=\frac{1}{\sqrt{1-x^{2}}}$ defined on the set of real numbers?

A all x except 1 and -1
B $x<1$ only
C $x>1, x<-1$ only
D $-1<x<1$ only
2. Which of the graphs shown below is most likely to be the graph with equation $y=3 x^{2}-2 x+4$?

B

3. The diagram shows part of the graph of a function with equation $y=f(x)$.

Which of the following diagrams shows the graph with equation $y=f(3-x)$?

B

C

D

4. $\quad f(x)=2 x^{2}-4$ and $g(x)=1-x$ define functions on the set of real numbers.

What is the value of $f(g(2))$?

A 4
B 3
C 0
D -2
5. When $2 x^{2}-12 x+13$ is written in the form $2(x+q)^{2}+r$, what is the value of r ?

A 13
B $\quad 1$
C $\quad-5$
D $\quad-13$
6. A function f is given by $f(x)=(x-2)^{2}-3$.

The function g is given by $g(x)=\frac{1}{f(x)+10}$.
Which of the following statements about the stationary value of g is true ?
A minimum value of g is 7
B maximum value of g is 7
C minimum value of g is $\frac{1}{7}$
D maximum value of g is $\frac{1}{7}$
7. The diagram shows the graph of the function f where $f(x)=p(x-q)^{2}+r$.

The line $x=0$ is an axis of symmetry of the curve. Which of the following is true about p, q and r ?

A $\quad p>0, q>0, r>0$
B $\quad p>0, q=0, r<0$
C $p<0, q=0, r>0$
D $p<0, q<0, r=0$
8. The population of hamsters in a breeding centre increases by 5% during each month.

At the end of each month the breeder sells 30 hamsters.
If u_{n} represents the hamster population at the beginning of a month, find an expression for u_{n+1}.

A $u_{n+1}=1 \cdot 5 u_{n}+30$
B $u_{n+1}=5 u_{n}-30$
C $\quad u_{n+1}=1.05 u_{n}-30$
D $u_{n+1}=0 \cdot 95 u_{n}+30$
9. A sequence is defined by the recurrence relation $u_{n+1}=a u_{n}+b$ and $u_{0}=4$.

Express u_{2} in terms of a and b.
A $u_{2}=4 a^{2}+a b+b$
B $\quad u_{2}=4+2 b$
C $u_{2}=4 a^{2}+a^{2} b$
D $u_{2}=2 a+b$
10. A sequence is defined by the recurrence relation $u_{n+1}=0 \cdot 5 u_{n}+2$ and $u_{0}=8$.

Here are two statements about this sequence:
(1) A limit exists for this sequence.
(2) No term in the sequence is greater than 8 .

Which of the following is true?
A neither statement is correct
B only statement (1) is correct
C only statement (2) is correct
D both statements are correct
11. A sequence is defined by the recurrence relation $u_{n+1}=\frac{1}{3} u_{n}-7$ and $u_{0}=-2$. What is the limit of this sequence as $n \rightarrow \infty$?

A $-\frac{21}{2}$
B $-\frac{7}{3}$
C $-\frac{1}{18}$
D $-\frac{1}{24}$
12. A parabola has equation $y=x^{2}+6 x-8$.

At what value of x does the minimum point of the parabola occur?
A -8
B $\quad-3$
C 0
D 3
13. Find the solution of $x^{2}+x-12<0$.

A $x<-4$ or $x>3$
B $\quad x<-3$ or $x>4$
C $-4<x<3$
D $-3<x<4$
14. Here are two statements about the equation $(x-3)^{2}=17$:
(1) the roots of the equation are real
(2) the roots of the equation are equal

Which of the following is true ?
A neither statement is correct
B only statement (1) is correct
C only statement (2) is correct
D both statements are correct
15. The equation $x^{2}+2 x+p=0$ has no real roots.

What is the range of values of p ?
A $p<-1$
B $p<0$
C $\quad p>0$
D $p>1$
16. The roots of a quadratic equation are -1 and p.

Which of the following could be the quadratic equation?
A $\quad x^{2}+(1-p) x-p=0$
B $\quad x^{2}-(1+p) x+p=0$
C $\quad x^{2}+(1+p) x+p=0$
D $\quad x^{2}+(p-1) x-p=0$
17. If $x-1$ is a factor of $x^{3}-6 x^{2}+p x-6$, what is the value of p ?

A $\quad-6$
B -1
C 1
D 11
18. If $\log (x)=2 \log (y)-3 \log (z)$, find an expression for x in terms of y and z.

A $x=2 y-3 z$
B $x=\frac{2 y}{3 z}$
C $x=\frac{y^{2}}{z^{3}}$
D $x=2 y+\frac{z}{3}$
19. Given that $\log _{a}(64)=\frac{3}{2}$, what is the value of a ?

A 16
B $\quad 42 \frac{2}{3}$
C 96
D 512
20. Given that $\log _{10}(y)=2 \log _{10}(x)+\log _{10}(3)$, express y in terms of x.

A $y=2 x+3$
B $y=6 x$
C $y=3 x^{2}$
D $y=3 \times 2^{x}$
21. The diagram shows the graph of $\log _{10}(y)$ plotted against x. The graph is a straight line through the origin with gradient 2 .

What is the equation of this line?
A $y=2 x$
B $y=10^{2 x}$
C $y=10^{x^{2}}$
D $y=x^{2}$
22. If $f(x)=4 x^{3}+5$, what is the value of $f^{\prime}(2)$?

A 22
B 26
C 37
D 48
23. If $f(x)=6 x^{3}-2 x^{-\frac{1}{2}}$ find $f^{\prime}(x)$.

A $18 x^{2}+x^{-\frac{3}{2}}$
B $2 x^{2}+4 x^{\frac{1}{2}}$
C $6 x^{2}-x^{-\frac{3}{2}}$
D $18 x^{2}+x^{\frac{1}{2}}$
24. Given that $f(x)=\frac{x^{2}+1}{x}, x \neq 0$, find $f^{\prime}(x)$.

A $2 x$
B $2 x+1$
C 1
D $1-\frac{1}{x^{2}}$
25. The tangent to the curve with equation $y=2 x^{2}-1$ is drawn at the point where $x=0$.

What is the gradient of this tangent?
A -1
B 0
C 1
D 2
26. The function f is defined by $f(x)=4 x^{3}-x^{4}$, where x is a real number. What is the rate of change of f with respect to x at $x=-1$?

A -6
B $\quad-5$
C 5
D 16
27. The graph of $y=f(x)$ is shown with stationary points at $x=0.75, x=1.5$ and $x=3$.

Here are two statements about $f^{\prime}(x)$:
(1) $f^{\prime}(1)<0$
(2) $f^{\prime}(2)<0$

Which of the following is true?
A neither statement is correct
B only statement (1) is correct
C only statement (2) is correct
D both statements are correct
28. $f(x)=a x^{2}-2 x-5$ has a stationary value where $x=3$.

What is the value of a ?

A -1
B 0
C $\quad \frac{1}{3}$
D $\frac{11}{9}$
29. The diagram shows the graphs of two functions, f and g.

Here are two statements about the functions in the interval $a \leq x \leq b$:
(1) Function f is differentiable for all values of x
(2) Function g is differentiable for all values of x.

Which of the following is true?
A neither statement is correct
B only statement (1) is correct
C only statement (2) is correct
D both statements are correct
30.

Find $\int_{-1}^{1} x^{4} d x$

A 0
B $\frac{1}{4}$
C $\frac{2}{5}$
D 8
31.

Find $\int\left(1-x^{-\frac{3}{2}}\right)$

A $2 x^{-\frac{1}{2}}+c$
B $x+2 x^{-\frac{1}{2}}+c$
C $\quad x-2 x^{\frac{1}{2}}+c$
D $x-2 x^{\frac{3}{2}}+c$
32.

Find $\int\left(x^{4}+\frac{1}{x^{4}}\right) d x$

A $\frac{x^{5}}{5}-\frac{1}{3 x^{3}}+c$
B $4 x^{3}-\frac{4}{x^{5}}+c$
C $\quad \frac{x^{5}}{5}+\frac{1}{5 x^{5}}+c$
D $\frac{x^{5}}{5}+\frac{1}{4 x^{3}}+c$
33.

What is the value of $\int_{-1}^{3} 3 x^{2} d x$?
A 20
B 24
C 28
D 32
34. Here are two statements about the numerical value of the shaded area shown in the diagram:
(1) Shaded area $=2 \int_{0}^{1} x d x$
(2) Shaded area $=\int_{-1}^{1} x d x$.

Which is of the following is true?

A neither statement is correct
B only statement (1) is correct
C only statement (2) is correct
D both statements are correct
35. The diagram shows the curves with equations $y=x^{2}$ and $y=4-x^{2}$.

Which of the following integrals gives the shaded area?

A $\int_{0}^{4}\left(4-2 x^{2}\right) d x$.
B $\int_{-2}^{2}\left(4-2 x^{2}\right) d x$.
C $\int_{-\sqrt{2}}^{\sqrt{2}}\left(4-2 x^{2}\right) d x$.
D $\int_{0}^{\sqrt{2}}\left(2 x^{2}-4\right) d x$.
36. If $\frac{d y}{d x}=2 x+1$ and $y=3$ when $x=1$, express y in terms of x.

A $y=x^{2}$
B $y=x^{2}+x+1$
C $y=2$
D $y=x^{2}+2$
37. Given that $f(x)=\cos \left(3 x^{2}+5\right)$, find $f^{\prime}(x)$.

A $3 \sin \left(3 x^{2}+5\right)$
B $3 \cos \left(3 x^{2}+5\right)$
C $\quad-\sin (6 x)$
D $-6 x \sin \left(3 x^{2}+5\right)$
38. If $f(x)=\left(2 x^{2}-1\right)^{3}$, find $f^{\prime}(x)$.

A $\frac{1}{16 x}\left(2 x^{2}-1\right)^{4}$
B $\quad 12 x\left(2 x^{2}-1\right)^{2}$
C $48 x^{5}$
D $48 x^{2}$
39. Find $\int(4 x-1)^{2} d x$.

A $\quad \frac{1}{3}\left(2 x^{2}-x\right)^{3}+c$
B $\quad 12(4 x-1)^{3}+c$
C $\frac{1}{12}(4 x-1)^{3}+c$
D $\left(2 x^{2}-x\right)^{2}+c$
40. Find $\int_{0}^{\frac{\pi}{4}} \cos 2 x d x$.

A $-2 \sqrt{2}$
B $\quad \frac{1}{2}$
C 0
D $\sqrt{2}$
41. What is the distance between the points $(-2,5,3)$ and $(4,-1,1)$?

A 6
B $\quad 10$
C $2 \sqrt{14}$
D $2 \sqrt{19}$
42. The line joining the points $(-2,-3)$ and $(6, k)$ has gradient $\frac{2}{3}$.

What is the value of k ?

A $\frac{14}{3}$
B $\quad \frac{7}{3}$
C $-\frac{1}{3}$
D $\quad-9$
43. A straight line passes through the points $\mathrm{P}(-5,-2)$ and $\mathrm{Q}(-2,-1)$.

What is the equation of the straight line which passes through P and is perpendicular to PQ ?

A $y+2=-3(x+5)$
B $\quad y-2=-\frac{3}{7}(x-5)$
C $y-1=-\frac{3}{7}(x-2)$
D $y-1=-\frac{1}{3}(x-2)$
44. The equation $a x+y+4 a=0$ defines a set of straight lines for different values of a, where $a \neq 0$.
Here are two statements about this set of lines:
(1) All cut the x-axis at the same point
(2) They are parallel

Which of the following is true ?
A neither statement is correct
B only statement (1) is correct
C only statement (2) is correct
D both statements are correct
45. $\quad \mathrm{P}$ and Q are the points $(2,3)$ and $(-1,4)$.

What is the gradient of a line perpendicular to PQ ?

A $-\frac{8}{7}$
B 3
C 5
D 7
46. P is the point $(a,-2)$ and Q is $(0, b)$.
$\mathrm{M}(1,2)$ is the midpoint of PQ .
What are the values of a and b ?

	a	b
A	1	-6
B	1	6
C	2	-6
D	2	6

47. Triangle OPQ has vertices at $0(0,0), \mathrm{P}(5,3)$ and $\mathrm{Q}(1,-7)$.

OS is a median. What are the coordinates of S ?
A $(-5,-2)$
B $(3,-5)$
C $(3,-2)$
D $(2,5)$
48. A circle has equation $x^{2}+y^{2}=4-4 x+2 y$.

What is the radius of this circle ?
A 2
B 3
C 4
D 5
49. PQ is a diameter of a circle.
P and Q have coordinates $(3,2)$ and $(7,2)$ respectively.
What is the equation of this circle?
A $(x-3)^{2}+(y-2)^{2}=16$
B $(x-4)^{2}+y^{2}=2$
C $\quad(x+5)^{2}+(y+2)^{2}=2$
D $(x-5)^{2}+(y-2)^{2}=4$
50. The following diagrams each show a circle with centre $\mathrm{Q}(a, b)$ and radius 5 units, cutting the x and y axes in P and R respectively. In which diagram would the gradient of the tangent at P equal $-\frac{4}{3}$?

A

B $\quad y_{\wedge}$

D
51. The line with equation $y=k$ intersects the circle with equation $x^{2}+y^{2}=4$ in at least one point.

What is the range of values of k ?
A $-2 \leq k \leq 2$
B $\quad-4 \leq k \leq 4$
C $k \geq 2, k \leq-2$
D $k \geq 4, k \leq-4$
52. Given that $\boldsymbol{u}=\left(\begin{array}{r}3 \\ -4 \\ 1\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{r}-2 \\ -1 \\ 1\end{array}\right)$, what is the magnitude of $(\boldsymbol{u}-\boldsymbol{v})$?

A $\quad 1$
B $\sqrt{20}$
C $\sqrt{32}$
D $\sqrt{34}$
53. P, Q and R are points such that $\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right), \overrightarrow{\mathrm{PR}}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ and R is $(0,2,1)$. What are the coordinates of Q ?

A $(-1,3,2)$
B $(-1,-1,0)$
C $(1,1,0)$
D $(2,0,1)$
54. The vector \boldsymbol{u} is given by $\boldsymbol{u}=\frac{1}{4} \boldsymbol{i}+p \boldsymbol{k}$ where $p>0$.

If \boldsymbol{u} is a unit vector, what is the value of p ?
A $\frac{3}{4}$
B $\quad 1$
C $\frac{\sqrt{17}}{16}$
D $\frac{\sqrt{15}}{4}$
55. For what value of z are the vectors $\left(\begin{array}{r}-2 \\ 3 \\ 6\end{array}\right)$ and $\left(\begin{array}{r}6 \\ -9 \\ z\end{array}\right)$ parallel ?

A -18
B $\quad-6$
C 14
D 54
56. Given that $\boldsymbol{p}=\left(\begin{array}{r}1 \\ 0 \\ -2\end{array}\right), \boldsymbol{q}=\left(\begin{array}{r}4 \\ -1 \\ -3\end{array}\right)$, and $\boldsymbol{r}=\left(\begin{array}{r}0 \\ -1 \\ 3\end{array}\right)$, what are the components of $\boldsymbol{p}-\boldsymbol{q}+3 \boldsymbol{r}$?

A $\left(\begin{array}{r}-3 \\ 0 \\ -2\end{array}\right)$
B $\quad\left(\begin{array}{r}5 \\ 0 \\ -8\end{array}\right)$

C $\quad\left(\begin{array}{r}0 \\ 0 \\ 54\end{array}\right)$

D $\quad\left(\begin{array}{c}-3 \\ -2 \\ 10\end{array}\right)$
57. The diagram shows a square PQRS where $\overrightarrow{\mathrm{SP}}=\boldsymbol{u}$ and $\overrightarrow{\mathrm{SR}}=\boldsymbol{v}$.

Express $\overrightarrow{\mathrm{ST}}$ in terms of \boldsymbol{u} and \boldsymbol{v}.
A $\overrightarrow{\mathrm{ST}}=\boldsymbol{u}+\frac{1}{2} \boldsymbol{v}$
B $\quad \overrightarrow{\mathrm{ST}}=\frac{1}{2} \boldsymbol{u}+\frac{1}{2} v$
C $\quad \overrightarrow{\mathrm{ST}}=\boldsymbol{u}-\frac{1}{2} \boldsymbol{v}$
D $\quad \overrightarrow{\mathrm{ST}}=\frac{1}{2} \boldsymbol{u}-\frac{1}{2} \boldsymbol{v}$
58. PQRS,KLMN is a cuboid as shown in the diagram.
$\overrightarrow{\mathrm{SN}}=\boldsymbol{u}, \overrightarrow{\mathrm{SR}}=\boldsymbol{v}$ and $\overrightarrow{\mathrm{SP}}=\boldsymbol{w}$.
T is the midpoint of KR .

Express $\overrightarrow{\mathrm{KT}}$ in terms of $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w}.
A $\overrightarrow{\mathrm{KT}}=-\frac{1}{2} \boldsymbol{u}+\frac{1}{2} \boldsymbol{v}-\frac{1}{2} \boldsymbol{w}$
B $\overrightarrow{\mathrm{KT}}=-\boldsymbol{u}+\boldsymbol{v}-\boldsymbol{w}$
C $\quad \overrightarrow{\mathrm{KT}}=\frac{1}{2} \boldsymbol{u}+\frac{1}{2} \boldsymbol{v}+\frac{1}{2} \boldsymbol{w}$
D $\overrightarrow{\mathrm{KT}}=\boldsymbol{u}-\boldsymbol{v}+\boldsymbol{w}$
59. The points $\mathrm{A}(1,4,2), \mathrm{B}(3,2, z)$ and $\mathrm{C}(7, y,-1)$ are collinear. What are the values of y and z ?

	y	z
A	2	-3
B	2	1
C	-2	-3
D	-2	1

60. The point N divides the line LM in the ratio $3: 1$.

L has coordinates $(-1,1,0)$ and $\overrightarrow{\mathrm{LM}}=\left(\begin{array}{l}4 \\ 4 \\ 4\end{array}\right)$.
What are the coordinates of N ?
A $\left(\frac{3}{2}, 2,1\right)$
B $(2,4,3)$
C $\left(\frac{5}{2}, 4,3\right)$
D $(5,3,4)$
61. The components of vectors \boldsymbol{u} and \boldsymbol{v} are given by $\boldsymbol{u}=\left(\begin{array}{r}0 \\ 2 \\ -1\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{r}3 \\ -1 \\ -5\end{array}\right)$.

What is the value of $\boldsymbol{u} \cdot \boldsymbol{v}$?
A $\quad-10$
B -3
C 3
D 5
62. The vectors $\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$ and $\left(\begin{array}{r}-5 \\ 2 \\ z\end{array}\right)$ are perpendicular.

What is the value of z ?

A -1
B 0
C $\frac{1}{4}$
D 4
63. What is the angle between the vectors $\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$?

A $\frac{\pi}{6}$
B $\frac{\pi}{4}$
C $\frac{\pi}{3}$
D $\frac{\pi}{2}$
64. What is the value of $(\boldsymbol{i}+2 \boldsymbol{j}) \cdot(\boldsymbol{j}+2 \boldsymbol{k})$?

A 0
B 2
C 5
D 9
65. Here are two statements about a stationary value for the function $f(x)=4 \sin x-2$:
(1) f has a stationary value when $x=\frac{\pi}{3}$
(2) f has a stationary value when $x=\frac{\pi}{2}$

Which of the following is true?
A neither statement is correct
B only statement (1) is correct
C only statement (2) is correct
D both statements are correct
66. What is the exact value of $\sin \frac{2 \pi}{3}+\sin \frac{7 \pi}{3}$?

A 0
B $\quad 1$
C $\sqrt{3}$
D 3
67. The diagram shows the graph of a trigonometric function.

Which of the following could be the equation of the graph?
A $y=1+\sin x^{\circ}$
B $y=1-\sin x^{\circ}$
C $y=2-\cos x^{\circ}$
D $y=2 \cos x^{\circ}-1$
68. What is the minimum value of $4 \cos \left(x-\frac{\pi}{3}\right)+6$?

A 10
B $\quad 9$
C 5
D 2
69. Given that $3 \cos x^{\circ}+4 \sin x^{\circ}=5 \cos (x-53 \cdot 1)^{\circ}$, which of the following equations has a solution when x is a real number?
(1) $3 \cos x^{\circ}+4 \sin x^{\circ}=2$
(2) $3 \cos x^{\circ}+4 \sin x^{\circ}=8$.

A neither equation has a solution
B only equation (1) has a solution
C only equation (2) has a solution
D both equations have a solution
70. If $\sin x^{\circ}=\frac{4}{5}$ and $0<x<90$, what is the exact value of $\sin 2 x^{\circ}$?

A $\frac{17}{25}$
B $\frac{8}{10}$
C $\quad \frac{24}{25}$
D $\frac{6}{5}$
71. The diagram shows an isosceles triangle with lengths as shown.

Express $\sin 2 t^{\circ}$ in terms of p, q and r.
A $\sin 2 t^{\circ}=\frac{2 q^{2}}{r^{2}}$
B $\sin 2 t^{\circ}=\frac{2 q}{r}$
C $\quad \sin 2 t^{\circ}=\frac{2 p}{r}$
D $\sin 2 t^{\circ}=\frac{2 p q}{r^{2}}$
72. If $\sqrt{3} \cos x+\sin x=k \cos x \cos p+k \sin x \sin p$, where $k>0$, what is the value of k ?

A 1
B 2
C 3
D 4
73. A function f is defined by $f(x)=5+2 \cos 3 x$, where x is a real number.

What is the range of f ?
A $\quad 3 \leq f(x) \leq 7$
B $5 \leq f(x) \leq 7$
C $5 \leq f(x) \leq 11$
D $-1 \leq f(x) \leq 11$
74. The graph with equation $y=(x-4)^{2}+k$ passes through the point $(3,9)$. What are the coordinates of the stationary point of the graph?

A $(4,8)$
B $(4,9)$
C $(4,10)$
D $(4,11)$
75. The diagram shows sketches of $y=f(x)$ and $y=k f(x)+c$.

What are the values of k and c ?

	k	c
A	-1	2
B	-1	-2
C	1	2
D	1	-2

76. $f(x)=2 x-1$ and $g(x)=2 x+1$ are functions defined on the set of real numbers.

Find an expression for $f(g(x))$.
A $\quad f(g(x))=4 x^{2}-1$
B $\quad f(g(x))=4 x^{2}$
C $f(g(x))=4 x$
D $\quad f(g(x))=4 x+1$
77. When $x^{2}+8 x+5$ is expressed in the form $(x+a)^{2}+b$, what is the value of b ?

A $\quad-59$
B -11
C 0
D 5
78. A function f is given by $f(x)=4-2 \cos 3 x$ on a suitable domain. What is the minimum value of f ?

A 1
B 2
C 6
D 7
79. The diagram shows part of the graph of a cubic function.

What is the equation of this graph?
A $\quad y=3(x+2)^{2}(x-1)$
B $y=(x+2)(x-1)^{2}$
C $\quad y=3(x+2)(x-1)^{2}$
D $y=(x+2)(x-1)(x+1)$
80. A fish farm starts with a stock of 5000 fish. Each Friday 30% of the fish are removed for sale and it is then restocked with 400 new fish.
Let u_{n} represent the number of fish after restocking n times.
What is the recurrence relation that describes the situation after restocking ?

A $u_{n+1}=0 \cdot 3 u_{n}+400$ and $u_{0}=5000$
B $\quad u_{n+1}=0 \cdot 7 u_{n}+400$ and $u_{0}=5000$
C $u_{n+1}=0 \cdot 3\left(u_{n}+400\right)$ and $u_{0}=5000$
D $u_{n+1}=0 \cdot 7\left(u_{n}+400\right)$ and $u_{0}=5000$
81. A sequence is defined by the recurrence relation $u_{n+1}=3 u_{n}-7$ and $u_{0}=1$.

What is the value of u_{2} ?
A -19
B -11
C -4
D -1
82. A sequence is generated by the recurrence relation
$2 u_{n+1}=k u_{n}+7$.
What is the largest range of k for which the sequence has a limit?

A $-0.5<k<0.5$
B $-1<k<1$
C $-2<k<2$
D $0<k<3$
83. A sequence is defined by the recurrence relation
$u_{n+1}=0 \cdot 6 u_{n}+k$ and $u_{0}=3$.
As $n \rightarrow \infty$, the limit of this sequence is 5 .
What is the value of k ?
A 0
B 0.88
C 2
D 8
84. The diagram shows the graph of a parabola.

What is the equation of this graph?
A $y=\frac{1}{2} x^{2}+\frac{1}{2} x-6$
B $y=x^{2}+x-12$
C $y=\frac{1}{2} x^{2}-\frac{1}{2} x-6$
D $y=6 x^{2}+6 x-72$
85. What is the solution of $2(x-3)(x+5)>0$?

A $2<x<5$
B $x<-5, x>3$
C $-5<x<3$
D $x<-3, x>5$
86. The function g is given by $g(x)=4 x^{2}-12 x+9$.

Which condition describes the nature of the roots of $g(x)=0$?
A Equal roots
B Exactly three distinct roots
C Exactly two distinct roots
D No real roots
87. The diagram shows part of the graph of a parabola with equation $y=p x^{2}+q x+r$. The x-axis is a tangent to the parabola.

What is the relationship between p, q and r ?
A $q^{2}=4 p r$
B $q^{2}>4 p r$
C $q^{2}<4 p r$
D $q^{2}=-4 p r$
88. The diagram shows part of the graph of a cubic function.

What is the equation of this graph ?
A $y=2(x-2)(x-1)(x+3)$
B $\quad y=12(x-2)(x-1)(x+3)$
C $y=-2(x-3)(x+1)(x+2)$
D $y=12(x-3)(x+1)(x+2)$
89. What is the remainder on dividing the polynomial $5 x^{3}-4 x+8$ by $x-2$?

A $\quad-24$
B 0
C 8
D 40
90. What is the value of $\frac{\log _{3}(8)}{\log _{3}(2)}$?

A $\quad \log _{3}(4)$
B $\quad \log _{3}(6)$
C 4
D 3
91. If $\log _{9}(x)=\frac{1}{4}$, what is the value of x ?

A $\sqrt{3}$
B $\frac{9}{4}$
C $\left(\frac{1}{4}\right)^{9}$
D $\frac{3}{2}$
92. Given that $\log _{10}(x)=y \log _{10}(3)+1$, express x in terms of y.

A $\quad x=10 \times 3^{y}$
B $\quad x=30^{10 y}$
C $x=3 y+10$
D $x=y^{3}+10$
93. Given that $y=k n^{x}$ where k and n are constants, what would you plot in order to get a straight line graph ?

A x against y
B $\quad x$ against $\log (y)$
C $\quad \log (x)$ against y
D $\quad \log (x)$ against $\log (y)$
94. Given that $f(x)=2 x^{3}-8 x$, what is the value of $f^{\prime}(-1)$?

A $\quad-2$
B 0
C $4 \frac{1}{2}$
D 6
95. If $f(x)=4 x^{-\frac{1}{2}}$, what is the value of $f^{\prime}(4)$?

A $-\frac{1}{4}$
B $\frac{1}{4}$
C 2
D 4
96. If $f(x)=3 x^{2}\left(2 x^{3}+4 x-1\right)$, find $f^{\prime}(x)$.

A $\quad 30 x^{4}+36 x^{2}-6 x$
B $36 x^{3}+24 x$
C $\quad 30 x^{4}+12 x^{3}-3 x^{2}$
D $x^{6}-3 x^{4}-x^{3}$
97. At a point P on the curve $y=6-3 x^{2}$, the gradient is 6 .

What is the x-coordinate of P ?
A -102
B $\quad-3$
C $\quad-1$
D 6
98. A function f is defined by $f(x)=(x-2)^{3}$.

What is the rate of change of f with respect to x at $x=3$?
A 0
B 1
C 3
D 19
99. Which of the functions shown satisfies the conditions $f^{\prime}(x)<0$ for $x<0$ and $f^{\prime}(x)>0$ for $x>0$, where x is a real number and $x \neq 0$?

B

C

D

100. A function f is given by $f(x)=(x-1)(x+5)$.
f has a stationary value when $x=a$.
What is the value of a ?
A $\quad-5$
B $\quad-2$
C 0
D 1
101. Which of the following could represent a function f such that $f(0)=0, f(1)=0, f^{\prime}(0)=1$ and $f^{\prime}(1)=0$?

A $\quad f(x) \uparrow$

B $f(x) \uparrow$

C $f(x) \wedge$

D $f(x) \uparrow$

102. The graph of a function f passes through the point $(1,5)$.

If $f(x)=\int 3 x^{2} d x$, find an explanatio n for $f(x)$.

A $\quad f(x)=x^{3}-1$
B $\quad f(x)=6 x+5$
C $f(x)=x^{3}+5$
D $\quad f(x)=x^{3}+4$
103. If $f^{\prime}(x)=\frac{1}{\sqrt[4]{x^{3}}}$, what is $f(x)$?

A $f(x)=\frac{1}{4} x^{\frac{1}{4}}+c$
B $\quad f(x)=4 x^{\frac{1}{4}}+c$
C $f(x)=-\frac{4}{7} x^{-\frac{7}{4}}+c$
D $f(x)=\frac{3}{4} x^{-\frac{7}{4}}+c$
104. Find $\int \frac{1}{5 \sqrt{x}} d x$.

A $\quad \frac{2}{5} x^{\frac{1}{2}}+c$
B $\frac{5}{2} x^{\frac{1}{2}}+c$
C $-\frac{1}{10} x^{-\frac{3}{2}}+c$
D $\frac{1}{10} x^{-\frac{3}{2}}+c$
105. What is the value of $\int_{0}^{3}\left(3 x^{2}+4 x\right) d x$?

A 22
B 31
C 39
D 45
106. In the diagram area $P=5$ sq. units and area $Q=3$ sq. units. Here are two statements relating to this diagram:
(1) $\int_{0}^{3} f(x) d x=8$
(2) $\int_{2}^{3} f(x) d x=3$

Which of the following is true ?
A neither statement is correct
B only statement (1) is correct
C only statement (2) is correct
D both statements are correct
107. The graphs of functions f and g are shown in the diagram.

Which of the following gives the area of the shaded section?

A $\int_{1}^{12}(g(x)-f(x)) d x$

B $\int_{1}^{12}(f(x)-g(x)) d x$

C $\int_{2}^{7}(g(x)-f(x)) d x$

D $\int_{2}^{7}(f(x)-g(x)) d x$
108. A curve passes through the point $(2,3)$. At every point on the curve $\frac{d y}{d x}=6 x^{2}$. What is the equation of the curve ?

A $y=18 x^{3}-141$
B $y=2 x^{3}-13$
C $y=2 x^{3}$
D $y=12 x-21$
109. If $y=\sin 3 x-\cos x$, what is $\frac{d y}{d x}$?

A $-3 \cos 3 x-\sin x$
B $3 \cos 3 x+\sin x$
C $\cos 3 x-\sin x$
D $3 \cos 2 x+\sin x$
110. If $f(x)=\left(x^{3}+7\right)^{2}$, find $f^{\prime}(x)$.

A $\frac{1}{3}\left(x^{3}+7\right)^{3}$
B $\quad 6 x^{2}\left(x^{3}+7\right)$
C $2\left(3 x^{2}+7\right)$
D $6 x^{2}$
111. Find $\int(4 x+1)^{-\frac{1}{2}} d x$

A $2\left(2 x^{2}+1\right)^{\frac{1}{2}}+c$
B $\quad \frac{1}{2}(4 x+1)^{\frac{1}{2}}+c$
C $\quad \frac{1}{4}(4 x+1)^{\frac{1}{2}}+c$
D $-\frac{8}{3}(4 x+1)^{\frac{-3}{2}}+c$
112. Find $\int_{0}^{\pi}(1+\cos x) d x$.

A 1
B $\quad \pi-2$
C 2
D π
113. The point $\mathrm{P}(7,6)$ lies on a circle with centre $(-5,1)$ as shown in the diagram.

What is the length of the diameter ?
A $2 \sqrt{53}$ units
B $2 \sqrt{111}$ units
C $2 \sqrt{157}$ units
D 26 units
114. What is the exact value of $\tan \frac{7 \pi}{6}$?

A $-\sqrt{3}$
B $-\frac{\sqrt{3}}{2}$
C $\frac{1}{\sqrt{3}}$
D $\sqrt{3}$
115. A line L is parallel to the line with equation $4 x+2 y=6$ and passes through the point $(-3,1)$.
What is the equation of L ?
A $y-1=-2(x-3)$
B $y-1=4(x-3)$
C $y-1=-2(x+3)$
D $y+3=-2(x-1)$
116. The lines with the equations $a x-2 y+5=0$ and $3 x+y-4=0$ are parallel.

What is the value of a ?
A $\quad-6$
B -2
C $-\frac{1}{3}$
D 3
117. A line L has equation $x+3 y+7=0$.

What is the gradient of a line perpendicular to L ?
A $-\frac{4}{3}$
B -1
C 1
D 3
118. A straight line passes through the points G, M and H where $\mathrm{G}=(-2,5)$ and $\mathrm{M}=(4,-3)$.
M is the midpoint of GH.
What are the coordinates of H ?

A $(6,-8)$
B $(6,1)$
C $(-6,1)$
D $(10,-11)$
119. P and Q have coordinates $(4,-7)$ and $(-2,5)$ respectively. The perpendicular bisector of PQ has a gradient of $\frac{1}{2}$.

What is the equation of the perpendicular bisector of PQ ?
A $2 y=x-3$
B $y=-2 x+1$
C $y=2 x+3$
D $2 y=-x-1$
120. Q is the centre of the circle with equation $x^{2}+y^{2}+2 x-4 y-15=0$ and $\mathrm{R}(3,4)$ lies on the circumference.
What is the gradient of QR ?
A $\frac{1}{8}$
B $\frac{1}{2}$
C 1
D $\frac{8}{5}$
121. The diagram shows a circle with the y-axis as a tangent. M and N have coordinates $(0,-8)$ and $(10,-8)$ and angle MKN equals 90°.

What is the equation of the circle passing through M, K and N ?
A $\quad(x+5)^{2}+(y-8)^{2}=100$
B $(x-10)^{2}+(y+8)^{2}=100$
C $\quad(x+5)^{2}+(y-8)^{2}=5$
D $(x-5)^{2}+(y+8)^{2}=25$
122. The point $\mathrm{P}(-3,4)$ lies on the circle $x^{2}+y^{2}=25$ as shown in the diagram.

What is the gradient of the tangent at P ?
A $-\frac{4}{3}$
B $-\frac{1}{5}$
C $\quad \frac{3}{4}$
D $\frac{5}{3}$
123. The line with the equation $y=2 x$ intersects the circle with equation $x^{2}+y^{2}=1$ at the point T.
What is the x-coordinate of T ?

A $\frac{1}{3}$
B $\frac{1}{\sqrt{6}}$
C $\frac{1}{\sqrt{5}}$
D $\frac{1}{2}$
124. What is the magnitude of the vector $\boldsymbol{v}=-2 \boldsymbol{i}+5 \boldsymbol{j}+\boldsymbol{k}$?

A 3
B $\quad 4$
C $\sqrt{21}$
D $\sqrt{30}$
125. P is the point $(1,2,3), \overrightarrow{\mathrm{PR}}$ represents the vector $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\overrightarrow{\mathrm{RQ}}$ represents the vector $\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$.

What are the coordinates of Q ?
A $(4,3,5)$
B $(5,4,6)$
C $(-2,0,-1)$
D $(3,2,4)$
126. Vector \boldsymbol{p} has components $\left(\begin{array}{r}\frac{2}{5} \\ \frac{\sqrt{5}}{5} \\ a\end{array}\right)$, where $a>0$.

If \boldsymbol{p} is a unit vector, what is possible value of a ?
A $\frac{3-\sqrt{5}}{5}$
B $\quad \frac{9}{25}$
C $\quad \frac{3}{5}$
D $\quad \frac{4}{5}$
127. A vector \boldsymbol{u} has components $\left(\begin{array}{r}2 \\ -3 \\ 6\end{array}\right)$.

What are the components of a unit vector parallel to \boldsymbol{u} ?
A $\left(\begin{array}{r}\frac{5}{2} \\ -\frac{5}{3} \\ \frac{5}{6}\end{array}\right)$
B $\quad\left(\begin{array}{r}\frac{2}{7} \\ -\frac{3}{7} \\ \frac{6}{7}\end{array}\right)$
C $\quad\left(\begin{array}{r}-\frac{2}{11} \\ -\frac{3}{11} \\ \frac{6}{11}\end{array}\right)$
D $\quad\left(\begin{array}{r}4 \\ -6 \\ 12\end{array}\right)$
128. Vector \boldsymbol{u} and \boldsymbol{v} are given by $\boldsymbol{u}=2 \boldsymbol{i}+\boldsymbol{k}$ and $\boldsymbol{v}=\boldsymbol{i}-3 \boldsymbol{j}+4 \boldsymbol{k}$.

What are the components of vector $2 \boldsymbol{u}-\boldsymbol{v}$?
A $\quad\left(\begin{array}{r}6 \\ 8 \\ -8\end{array}\right)$
B $\quad\left(\begin{array}{r}-1 \\ 1 \\ -2\end{array}\right)$

C $\quad\left(\begin{array}{r}3 \\ 3 \\ -2\end{array}\right)$

D $\quad\left(\begin{array}{r}4 \\ 6 \\ -6\end{array}\right)$
129. The diagram shows a trapezium PQRS.

PS is parallel to QR and $|\mathrm{PS}|=3|\mathrm{QR}|$.
$\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PS}}$ represent vectors \boldsymbol{a} and \boldsymbol{b} respectively.

Express $\overrightarrow{\mathrm{SR}}$ in terms of \boldsymbol{a} and \boldsymbol{b}.
A $\quad \overrightarrow{\mathrm{SR}}=\boldsymbol{a}$
B $\quad \overrightarrow{\mathrm{SR}}=\boldsymbol{a}-\frac{2}{3} \boldsymbol{b}$
C $\quad \overrightarrow{\mathrm{SR}}=-\boldsymbol{a}+\frac{4}{3} \boldsymbol{b}$
D $\quad \overrightarrow{\mathrm{SR}}=\boldsymbol{a}-4 \boldsymbol{b}$
130. OABC,DEFG is a cuboid where A is the point $(5,0,0)$ and F is $(5,3,4)$, as shown in the diagram.

What are the components of $\overrightarrow{\mathrm{AG}}$?
A $\left(\begin{array}{r}-5 \\ 3 \\ 4\end{array}\right)$
B $\quad\left(\begin{array}{l}3 \\ 4 \\ 0\end{array}\right)$
C $\quad\left(\begin{array}{r}4 \\ -5 \\ -3\end{array}\right)$
D $\quad\left(\begin{array}{l}5 \\ 4 \\ 3\end{array}\right)$
131. The diagram shows three collinear points P, Q and R where $3 \overrightarrow{\mathrm{PQ}}=2 \overrightarrow{\mathrm{PR}}$.

What is the ratio in which Q divides PR ?
A $2: 1$
B $3: 1$
C $3: 2$
D $5: 3$
132. A is the point $(1,4,-2)$ and $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{r}-1 \\ -5 \\ 7\end{array}\right)$.

If $\overrightarrow{\mathrm{AC}}=3 \overrightarrow{\mathrm{AB}}$, what are the coordinates of C ?
A $(1,1,13)$
B $(-3,-15,21)$
C $(-2,-11,19)$
D $(3,15,-21)$
133. Vectors \boldsymbol{u} and \boldsymbol{v} are defined by $\boldsymbol{u}=\boldsymbol{i}+2 \boldsymbol{j}-4 \boldsymbol{k}$ and $\boldsymbol{v}=3 \boldsymbol{i}+2 \boldsymbol{k}$. What is the value of $\boldsymbol{u} . \boldsymbol{v}$?

A $\quad-5$
B -1
C 0
D 3
134. Vectors \boldsymbol{u} and \boldsymbol{v} are given $\boldsymbol{u}=2 \boldsymbol{i}-\boldsymbol{j}+5 \boldsymbol{k}$ and $\boldsymbol{v}=3 \boldsymbol{i}+p \boldsymbol{j}-\boldsymbol{k}$.

If \boldsymbol{u} and \boldsymbol{v} are perpendicular, what is the value of p ?
A 1
B 4
C 7
D 8
135. Vectors \boldsymbol{a} and \boldsymbol{b} are inclined at an angle of t radians to each other, as shown in the diagram.

If $\boldsymbol{a} \cdot \boldsymbol{b}=2$ and $|\boldsymbol{a}|=|\boldsymbol{b}|=\sqrt{3}$ units, what is the value of $\cos t$?
A -1
B $\frac{2}{3}$
C $\frac{2}{\sqrt{3}}$
D $\frac{3}{2}$
136. Two vectors, \boldsymbol{a} and \boldsymbol{b}, are perpendicular and $|\boldsymbol{a}|=2$ units, $|\boldsymbol{b}|=3$ units. What is the value of $\boldsymbol{a} \cdot(\boldsymbol{a}+\boldsymbol{b})$?

A 0
B 4
C 7
D 10
137. Which of the four graphs is most likely to show the graph of $y=\cos 2 x^{\circ}$ for $0 \leq x \leq 360$?

A

B

C

D

138. If $f(x)=1+\cos x$, what is the value of $f^{\prime}\left(\frac{2 \pi}{3}\right)$?

A $-\frac{\sqrt{3}}{2}$
B $-\frac{1}{2}$
C $\quad \frac{1}{2}$
D $\frac{1}{\sqrt{3}}$
139. The diagram shows part of the graph whose equation is of the form $y=a \sin b x$.

What is the equation of this graph?
A $y=-3 \sin \frac{1}{2} x$
B $\quad y=3 \sin \frac{1}{2} x$
C $y=-3 \sin 2 x$
D $y=3 \sin 2 x$
140. The maximum value of $1-\cos \left(x-\frac{\pi}{6}\right), 0 \leq x<2 \pi$ occurs when $x=t$.

What is the value of t ?
A 0
B $\frac{\pi}{6}$
C $\frac{2 \pi}{3}$
D $\frac{7 \pi}{6}$
141. What is the solution of the equation $\sqrt{3} \sin x=-\cos x$ where $0 \leq x \leq \frac{3 \pi}{2}$?

A $\frac{2 \pi}{3}$
B $\frac{5 \pi}{6}$
C $\frac{7 \pi}{6}$
D $\frac{4 \pi}{3}$
142. Expand $\cos \left(x+\frac{\pi}{4}\right)$.

A $\quad \cos \left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \cos x-\frac{1}{\sqrt{2}} \sin x$
B $\quad \cos \left(x+\frac{\pi}{4}\right)=\cos x+\frac{1}{\sqrt{2}}$
C $\quad \cos \left(x+\frac{\pi}{4}\right)=\cos x-\frac{1}{\sqrt{2}}$
D $\quad \cos \left(x+\frac{\pi}{4}\right)=\frac{1}{2} \cos x+\frac{\sqrt{3}}{2} \sin x$
143. The diagram shows a right-angled triangle with side lengths of $2, \sqrt{21}$ and 5 .

What is the exact value of $\sin 2 a$?

A $\quad \frac{4}{5}$
B $\quad \frac{17}{25}$
C $\frac{4 \sqrt{21}}{25}$
D $\frac{2 \sqrt{21}}{5}$
144. $\quad k$ and a are given by

$$
\begin{aligned}
k \sin a & =1 \\
\text { and } k \cos a & =1
\end{aligned}
$$

$$
\text { where } k>0 \text { and } 0 \leq a \leq \frac{\pi}{2} \text {. }
$$

What are the values of k and a ?

	k	a
A	$\sqrt{2}$	0
B	$\sqrt{2}$	$\frac{\pi}{4}$
C	2	0
D	2	$\frac{\pi}{4}$

