National 5 Mathematics Past Papers by Topic

Contents:
Expressions \& Formulae Page
Surds \& Indices. 1
Scientific Notation. 3
Algebra 5
Completing the Square 7
Algebraic Fractions 8
Volumes 10
Gradient (See Straight Line) 24
Circles 15
Relationships
The Straight Line 24
Function Notation 30
Solving Equations/Inequations. 31
Simultaneous Equations 33
Change the Subject. 37
Quadratic Functions 38
Properties of Shapes (See Circles) 15
Similar Shapes 50
Trigonometry (Graphs and Equations) 54
Trig Identities 60
Applications
Triangle Trigonometry. 69
Converse of Pythagoras 70
Vectors 71
Percentages 78
Fractions and BODMAS 82
Statistics 84

This book of past paper questions by topic is made freely available by Zeta Maths for teachers and learners, to be used for educational purposes.

The questions have been made available by and are copyright of the SQA. To obtain past papers by years visit the SQA website at www.sqa.org.uk.

The questions marked PP are practice papers produced by www.maths180.com. Visit the website for 100's of free video lessons for National 5 and Higher Maths.

The answers and worked solutions in these documents have been collated from a variety of sources and are not the authorship of Zeta Maths Ltd.

For easy navigation of the document, the contents page is linked to each chapter and the chapter headings at the top of each page are linked back to the contents page.

National 5：Surds and Indices

	8．Express $\sqrt{40}+4 \sqrt{10}+\sqrt{90}$ as a surd in its simplest form．	3
㚣	$9 \sqrt{10}$	
	8．Simplify $\frac{n^{5} \times 10 n}{2 n^{2}}$ ．	3
荌	$5 n^{4}$	
$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	13．Express $\frac{4}{\sqrt{8}}$ with a rational denominator． Give your answer in its simplest form．	3
荌	$\sqrt{2}$	
等 ${ }^{\text {a }}$	14．Evaluate $8^{\frac{5}{3}}$ ．	2
荌	32	
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{0} \end{aligned}$	9．The function $f(x)$ is defined by $f(x)=\frac{2}{\sqrt{x}}, \quad x>0$ ． Express $f(5)$ as a fraction with a rational denominator．	2
荌	$\frac{2 \sqrt{5}}{5}$	
$\begin{aligned} & \text { ̃} \\ & \stackrel{\vdots}{0} \\ & \stackrel{1}{2} \end{aligned}$	10．Simplify $\left(n^{2}\right)^{3} \times n^{-10}$ ． Give your answer with a positive power．	3
荌	$\frac{1}{n^{4}}$	
ลั่ «	12．Express $\frac{1}{\sqrt[3]{x}}$ in the form x^{n} ．	2
荌	$x^{-\frac{1}{3}}$	
$\begin{aligned} & \frac{\pi}{2} \\ & \frac{2}{2} \end{aligned}$	13．（a）Express $\frac{3}{x}-\frac{5}{x+2}, x \neq 0, x \neq 2$ ，as a single fraction in its simplest form． （b）Express $\sqrt{18}-\sqrt{2}+\sqrt{72}$ as a surd in its simplest form．	3 3

National 5: Surds and Indices

N 0 0 \sim \sim 1	2. There are 3×10^{5} platelets per millilitre of blood. On average, a person has 5.5 litres of blood. On average, how many platelets does a person have in their blood? Give your answer in scientific notation.	2
$\stackrel{3}{4}$	1.5×10^{9}	
N	6. (a) The Earth is approximately spherical with a radius of 6400 kilometres. Calculate the volume of the Earth giving your answer in scientific notation, correct to 2 significant figures. (b) The approximate volume of the Moon is 2.2×10^{10} cubic kilometres. Calculate how many times the Earth's volume is greater than the Moon's.	3 2
尔	(a) $1.1 \times 10^{12} \mathrm{~km}^{3}$ (b) 50 times bigger	
N N - N	2. A pollen sample weighs 12 grams and contains 1.5×10^{9} pollen grains. Calculate the weight of one pollen grain in grams. Give your answer in scientific notation.	2
$\stackrel{3}{4}$	8×10^{-9}	
N 0 0 0	1. A spider weighs approximately 19.06×10^{-5} kilograms. A humming bird is 18 times heavier. Calculate the weight of the humming bird. Give your answer in scientific notation.	2

$\stackrel{n}{4}$	3.431×10^{-3} kilograms	
N N un a	1. $E=m c^{2}$ Find the value of E when $m=3.6 \times 10^{-2}$ and $c=3 \times 10^{8}$. Give your answer in scientific notation.	3
$\stackrel{3}{4}$	3.24×10^{15}	
$\begin{aligned} & \text { a } \\ & \text { i, } \\ & 0 \end{aligned}$	1. The orbit of a planet around a star is circular. The radius of the orbit is 4.96×10^{7} kilometres. Calculate the circumference of the orbit. Given your answer in scientific notation.	3
¢	3.12×10^{8} kilometres	

$\begin{aligned} & \underset{\circ}{\square} \\ & \underset{\sim}{J} \end{aligned}$	2．Multiply out the brackets and collect like terms： $(2 x-5)(3 x+1)$	2
年	$6 x^{2}-13 x-5$	
－	4．Multiply out the brackets and collect like terms $(x-4)\left(x^{2}+x-2\right)$	3
¢	$x^{3}-3 x^{2}-6 x+8$	
ごへ	4．Expand and simplify $(2 x+3)\left(x^{2}-4 x+1\right)$ ．	3
号	$2 x^{3}-5 x^{2}-10 x+3$	
2	12．The square and rectangle shown below have the same perimeter． Show that the length of the rectangle is $(3 x+1)$ centimetres．	2
$\stackrel{4}{4}$	$\begin{aligned} & \mathrm{P}(\text { rectangle })=\mathrm{P} \text { (square) } \\ & 2 l+2(x+3)=4(2 x+2) \\ & l+x+3=2(2 x+2) \\ & l=4 x+4-x-3 \\ & l=3 x+1 \text { as required } \end{aligned}$	
－	3．Multiply out the brackets and collect like terms． $(x+4)\left(2 x^{2}+3 x-1\right)$	3
$\stackrel{4}{4}$	$2 x^{3}+11 x^{2}+11 x-4$	
［18	9．Multiply out the brackets and collect like terms． $(x-3)\left(x^{2}+4 x-1\right)$	3
$\stackrel{3}{4}$	$x^{3}+x^{2}-13 x+3$	
运：	3．Simplify $3(2 x-4)-4(3 x+1)$	3
$\stackrel{3}{4}$	$-6 x-16$	

\begin{tabular}{|c|c|c|}
\hline ¿2 \& 2．Multiply out the brackets and collect like terms．
\[
(4 x+2)(x-5)+3 x
\] \& 3 \\
\hline ¢ \& \(4 x^{2}-15 x-10\) \& \\
\hline 込～ \& 4．Factorise fully \(3 x^{2}-48\) ． \& 2 \\
\hline \(\stackrel{3}{4}\) \& \(3(x+4)(x-4)\) \& \\
\hline N \& \begin{tabular}{l}
9．（a）Factorise \(4 x^{2}-25\) ． \\
（b）Hence simplify \(\frac{4 x^{2}-25}{2 x^{2}-x-10}\) ．
\end{tabular} \& 1
3 \\
\hline \(\frac{3}{4}\) \& \begin{tabular}{l}
（a）\((2 x+5)(2 x-5)\) \\
（b）\(\frac{2 x+5}{x+2}\)
\end{tabular} \& \\
\hline 行 \& 2．Factorise \(x^{2}+2 x-15\) ． \& 2 \\
\hline \(\stackrel{\square}{4}\) \& \((x+5)(x-3)\) \& \\
\hline a
0
0
0 \& \begin{tabular}{l}
6. \\
（a）Factorise
\[
p^{2}-4 q^{2} .
\] \\
（b）Hence simplify \(\frac{p^{2}-4 q^{2}}{3 p+6 q}\) ．
\end{tabular} \& 1
2 \\
\hline \(\stackrel{\square}{4}\) \& 6a．\((p+2 q)(p-2 q) \quad\) b．\(\quad \frac{p-2 q}{3}\) \& \\
\hline a
0
0
0 \& 5．Solve，by factorising
\[
7+6 x-x^{2}=0
\] \& 3 \\
\hline \(\stackrel{n}{4}\) \& \(x=7, x=-1\) \& \\
\hline 21
4
0
0 \& \begin{tabular}{l}
2．（a）Factorise
\[
4 x^{2}-y^{2} .
\] \\
（b）Hence simplify
\[
\frac{4 x^{2}-y^{2}}{6 x+3 y}
\]
\end{tabular} \& 1

2

\hline 年 \& $\begin{array}{ll}\text {（a）} & (2 x+y)(2 x-y) \\ \text {（b）} & \frac{2 x-y}{3}\end{array}$ \&

\hline
\end{tabular}

National 5: Algebra (Completing the Square)

$\begin{aligned} & \stackrel{a}{1} \\ & 0 \\ & \infty \\ & \stackrel{1}{\sim} \end{aligned}$	13. A parabola has equation $y=x^{2}-8 x+19$. (a) Write the equation in the form $y=(x-p)^{2}+q$.	2
¢	(a) $y=(x-4)^{2}+3$	
-	3. Express $x^{2}-14 x+44$ in the form $(x-a)^{2}+b$.	2
㳋	$(x-7)^{2}-5$	
N	9. Express $x^{2}+8 x-7$ in the form $(x+a)^{2}+b$.	2
¢	$(x+4)^{2}-23$	
a	4. Express $y=x^{2}+8 x-7$ in the form $y=(x+a)^{2}+b$ and hence state the coordinates of the turning point.	3
¢	$y=(x+4)^{2}-23$, T.P. $(-4,-23)$	
a i 0 0	9. $f(x)=x^{2}+6 x-7$ (a) Write $f(x)$ in the form $(x+a)^{2}+b$. (b) State the coordinates of the turning point of $f(x)$.	2 1
尔	a $f(x)=(x+3)^{2}-16 \quad$ b $\quad(-3,-16)$	

	14．Express	
$\begin{aligned} & \text { a } \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	$\frac{4}{x+2}-\frac{3}{x-4}, \quad x \neq-2, x \neq 4$ as a single fraction in its simplest form．	3
尔	$\frac{x-22}{(x+2)(x-4)}$	
N	9．Express $\frac{7}{x+5}-\frac{3}{x} \quad x \neq-5, x \neq 0$ as a single fraction in its simplest form．	3
¢	$\frac{4 x-15}{x(x+5)}$	
～ั̇	12．Simplify $\frac{x^{2}-4 x}{x^{2}+x-20}$ ．	3
¢	$\frac{x}{x+5}$	
－N	7．Express $\frac{5 t}{s} \div \frac{t}{2 s^{2}}$ in its simplest form．	3
¢	10s	
N 0 0 －	13．Express $\frac{3}{x-2}+\frac{5}{x+1}, \quad x \neq 2, x \neq-1$ as a single fraction in its simplest form．	3
華	$\frac{8 x-7}{(x-2)(x+1)}$	
	11．Express $\frac{3}{a^{2}}-\frac{2}{a}, a \neq 0$ ，as a single fraction in its simplest form．	2
先	$\frac{3-2 a}{a^{2}}$	
$\begin{aligned} & 2 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	14．（b）Express as a fraction in its simplest form $\frac{1}{x^{2}}+\frac{1}{x}, \quad x \neq 0$	2

号	$\frac{1+x}{x^{2}}$	
$\begin{aligned} & \text { N } \\ & \text { ì } \end{aligned}$	12．（a）A driver travels from A to B ，a distance of x kilometres，at a constant speed of 75 kilometres per hour． Find the time taken for this journey in terms of x ． （b）The time taken for the journey from B to A is $\frac{x}{50}$ hours． Calculate the average speed for the whole journey．	1 4
咎	a $\frac{x}{75} \quad$ b $60 \mathrm{~km} / \mathrm{h}$	
를	8．Write $\frac{3}{m}+\frac{4}{(m+1)}$ as a single fraction in its simplest form．	3
㐌	$\frac{7 m+3}{m(m+1)}$	
를	Q10．Express $\frac{4}{x+3}+\frac{3}{x}, x \neq-3, x \neq 0$ ，as a fraction in its simplest form．	3
尔	$\frac{7 x+9}{x(x+3)}$	
$\begin{aligned} & \text { N } \\ & \stackrel{2}{2} \end{aligned}$	8．Express $\frac{3}{(x+1)}-\frac{1}{(x-2)}, \quad x \neq-1, \quad x \neq-2$ as a single fraction in its simplest form．	3
玺	$\frac{2 x-7}{(x+1)(x-2)}$	

N 0 0 0 0 \sim \sim	6. A child's toy is in the shape of a hemisphere with a cone on top, as shown in the diagram. The toy is 12 centimetres wide and 17 centimetres high. Calculate the volume of the toy. Give your answer correct to 2 significant figures.	5
$\frac{n}{4}$	$870 \mathrm{~cm}^{3}$	
N \sim \sim \sim	7. An ornament is in the shape of a cone with diameter 8 centimetres and height 15 centimetres. The bottom contains a hemisphere made of copper with diameter 7.4 centimetres. The rest is made of glass, as shown in the diagram below. Calculate the volume of the glass part of the ornament. Give your answer correct to 2 significant figures.	5
$\stackrel{n}{4}$	$150 \mathrm{~cm}^{3}$	

| 7. A carton is in the shape of a large cone with a small cone removed. |
| :--- | :--- | :--- | :--- |
| The large cone has diameter of 32 cm and height 24 cm. |
| The small cone has diameter of 18 cm and height 13.5 cm. |

National 5: Volume of Solids

N \vdots 0 0	4. A mug is in the shape of a cylinder with diameter 10 centimetres and height 14 centimetres. (a) Calculate the capacity of the mug. (b) 600 millilitres of coffee are poured in. Calculate the depth of the coffee in the mug.	2
每	a $1100 \mathrm{~cm}^{3}$ b	
N 0 0 0	Q9. A gift box, 8 centimetres high, is prism shaped. The uniform cross-section is a regular pentagon. Each vertex of the pentagon is 10 centimetres from the centre 0 . Calculate the volume of the box.	5
每	$1902.1 \mathrm{~cm}^{3}$ (1dp)	

n a a a	7. A pharmaceutical company makes vitamin pills in the shape of spheres of radius 0.5 centimetres. (a) Calculate the volume of one pill. Give your answer to 3 significant figures. The company decides to change the shape of each pill to a cylinder. The new pill has the same volume as the original and its diameter is 1.4 centimetres. (b) Calculate the height of the new pill.	3
$\underset{4}{\sim}$	$0.524 \mathrm{~cm}^{3} \quad(3 \mathrm{SF}) \quad$ (b) $0.34 \mathrm{~cm}(2$ decimal places)	
N a 0 0	5. A child's toy is in the shape of a hemisphere with a cone on top, as shown in the diagram. The toy is 10 centimetres wide and 16 centimetres high. Calculate the volume of the toy. Give your answer correct to two significant figures.	5
$\frac{\sim}{4}$	550 cubic centimetres (to 2 SF)	

(a) Calculate the area of the sector removed from the circle.
(b) Calculate the circumference of the base of the cone.
16. A cylindrical pipe has water in it as shown.
(b) $1341 \mathrm{~cm}^{2}$

$\begin{aligned} & \text { N } \\ & \text { İ } \end{aligned}$	13. The picture shows the entrance to a tunnel which is in the shape of part of a circle. The diagram below represents the cross-section of the tunnel. - The centre of the circle is 0 . - MN is a chord of the circle. - Angle MON is 50°. - The radius of the circle is 7 metres. Calculate the area of the cross-section of the tunnel.	5
年	$\overline{151 \cdot 3 \mathrm{~m}^{2}}$	
$\begin{aligned} & \text { N } \\ & \stackrel{\sim}{\partial} \end{aligned}$	10. The pendulum of a clock swings along an arc of a circle, centre 0 . The pendulum swings through an angle of 65°, travelling from A to B. The length of the arc $A B$ is 28.4 centimetres. Calculate the length of the pendulum.	4
尔	25 cm	

$\begin{aligned} & \text { II } \\ & 0 \\ & 0 \\ & \text { N} \end{aligned}$	3. The diagram shows a sector of a circle, centre C. The radius of the circle is 20 centimetres and angle $A C B$ is 45°. Calculate the area of the sector. Take $\pi=3 \cdot 14$.	3
$\frac{n}{4}$	$157 \mathrm{~cm}^{2}$	
$\begin{gathered} \text { N } \\ \stackrel{\rightharpoonup}{\sim} \end{gathered}$	14. The diagram below shows part of a circle, centre 0 . The radius of the circle is 6.4 centimetres. Major arc $A B$ has length $31 \cdot 5$ centimetres. Calculate the size of the reflex angle AOB.	3
$\frac{n}{4}$	282°	
$\begin{aligned} & N \\ & i \\ & i \\ & i \end{aligned}$	5. The diagram shows a mirror which has been designed for a new hotel. The shape consists of a sector of a circle and a kite $A O C B$. - The circle, centre 0 , has a radius of 50 centimetres. Angle $A O C=140^{\circ}$ $A B$ and $C B$ are tangents to the circle at A and C respectively. Find the perimeter of the mirror.	5

年	466.73 centimetres	
$\begin{aligned} & \text { N } \\ & \infty \\ & 0 \end{aligned}$	4. A pendulum travels along an arc of a circle, centre C. The length of the pendulum is 20 centimetres. The pendulum swings from A to B. The length of the arc $A B$ is 28.6 centimetres. Find the angle through which the pendulum swings from A to B.	4
年	81.9°	
N U 0 0	5. The diagram below shows a big wheel at the fairground. The wheel has 16 chairs equally spaced on its circumference. The radius of the wheel is 9 metres. As the wheel rotates in an anticlockwise direction, find the distance a chair travels in moving from position T to position P in the diagram.	4
$\stackrel{3}{4}$	24.74 m	

| 12. A piece of gold wire 10 centimetres long is made into a circle. |
| :--- | :--- | :--- |$\quad 4$

| 9. | A set of scales has a circular dial.
 The pointer is 9 centimetres long.
 The tip of the pointer moves through an arc of 2 centimetres for each
 100 grams of weight on the scales. |
| :--- | :--- | :--- |
| A parcel, placed on the scales, moves the pointer through an angle of 284°.
 Calculate the weight of the parcel. | 4 |
| 2230.5 grams (to 1 decimal place) | |

$\begin{aligned} & \text { i} \\ & \stackrel{n}{7} \\ & \sim \end{aligned}$	3. $A C$ is a tangent to the circle, centre 0 , with point of contact B. $D E$ is a diameter of the circle and F is a point on the circumference. Angle ABD is 77° and angle DEF is 64°. Calculate the size of angle BDF.	3
$\frac{n}{4}$	39°	
$\begin{aligned} & \text { i } \\ & 0 \\ & \underset{o}{\circ} \\ & \sim \end{aligned}$	5. The diagram below shows a circle, centre 0 . - $A B$ and $C B$ are tangents to the circle. - $A C$ and ED are parallel. - Angle AOD is 143°. Calculate the size of angle $A B C$.	3
$\frac{n}{4}$	74°	

$\begin{aligned} & \text { n} \\ & \text { N} \\ & \text { N} \end{aligned}$	9. In the diagram shown below: - $A B E$ is a tangent to the circle centre 0 - Angle DBE is 58° Calculate the size of angle CAB.	3
$\frac{n}{4}$	26°	
$\begin{aligned} & \text { N } \\ & \text { u } \\ & \text { in } \end{aligned}$	2. The tangent, $M N$, touches the circle, centre 0 , at L . Angle JLN $=47^{\circ}$ Angle $\mathrm{KPL}=31^{\circ}$ Find the size of angle JLK.	3
先	102°	

National 5: Circles - Angle Properties

9.The tangent SV touches the circle, centre O , at T.
O Angle PTQ is 37°.
Angle VTR is 68°

$\left.\begin{array}{|l|l|l|l|}\hline \text { 6. McGregor's Burgers sells fast food. } \\ \text { The graph shows the relationship between the amount of fat, } F \text { grams, and } \\ \text { the number of calories, } C \text { in some of their sandwiches. }\end{array}\right]$

\begin{tabular}{|c|c|c|}
\hline 先 \& \(y=2 x+9\) \& \\
\hline İ
\(\stackrel{0}{0}\)
\(\stackrel{1}{1}\) \& \begin{tabular}{l}
5．A cattle farmer records the weight of some of his calves． \\
The scattergraph shows the relationship between the age，\(A\) months，and the weight，\(W\) kilograms，of the calves． \\
A line of best fit is drawn． \\
Point D represents a 3 month old calf which weighs 100 kilograms． \\
Point E represents a 15 month old calf which weighs 340 kilograms． \\
（a）Find the equation of the line of best fit in terms of \(A\) and \(W\) ． Give the equation in its simplest form． \\
（b）Use your equation from part（a）to estimate the weight of a one year old calf． \\
Show your working．
\end{tabular} \& 3

1

\hline 玺 \& | （a）$W=20 A+40$ |
| :--- |
| （b） $20 \times 12+40=280 \mathrm{~kg}$ | \&

\hline \& | 6．The diagram below shows the straight line joining points A and B ． |
| :--- |
| Find the equation of the line $A B$ ． |
| Give the equation in its simplest form． | \& 3

\hline 尔 \& $y=-2 x+4$ \&

\hline
\end{tabular}

National 5: Straight Line

N	11. A straight line has equation $3 x-5 y-10=0$. Find the gradient of this line.		
¢	$\frac{3}{5} \text { or } 0.6$		
2 2 2 0	3. Find the equation of this straight line in the form $y=m x+c$		
年	$y=10 x+5$		
a \vdots 2 0 0	10. A straight line has the equation $3 x-y=9$. A second line is parallel to this and passes throught the point $(5,-3)$. Write down the equation of the second line.		
$\stackrel{\text { n }}{4}$	$y=3 x-18$		
a 0 0 0	7. Find the equation of the straight line shown in the diagram. Give your answer in the form $y=m x+c$.		
尔	$y=\frac{5}{2} x+5$		

National 5: Straight Line

National 5：Function Notation

$\begin{aligned} & \text { a } \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	10．The function $f(x)$ is defined by $f(x)=\frac{2}{\sqrt{x}}, x>0$ ． Express $f(5)$ as a fraction with a rational denominator．	2
尔	$\frac{2 \sqrt{5}}{5}$	
N N in	2．A function is defined as $f(x)=3 x+2$ ． Given that $f(a)=23$ ，calculate a ．	2
年	$a=7$	
－	1．Given that $f(x)=x^{2}+3 x$ ，evaluate $f(-5)$ ．	2
華	10	
응	4．Given that $f(x)=x^{2}+5 x$ ，evaluate $f(-3)$ ．	2
咎	$f(-3)=-6$	
$\begin{aligned} & \text { a } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	11．Two functions are given below． $\begin{aligned} & f(x)=x^{2}+2 x-1 \\ & g(x)=5 x+3 \end{aligned}$ Find the values of x for which $f(x)=g(x)$ ．	3
姺	$x=4, x=-1$	
$\begin{aligned} & \text { İ } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	4. $f(x)=7-4 x$ （a）Evaluate $f(-2)$ ． （b）Given that $f(t)=9$ ，find t ．	1 2
年	$\text { a } \quad 15$ b $\quad t=-\frac{1}{2}$	

$\begin{aligned} & \text { N } \\ & \stackrel{\sim}{\sim} \\ & \stackrel{\sim}{n} \end{aligned}$	2．Solve algebraically the inequality $11-2(1+3 x)<39$	3
年	$x>-5$	
$\begin{aligned} & \text { I } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8．Solve the equation $\frac{2 x}{3}-\frac{5}{6}=2 x$ Give your answer in its simplest form．	3
年	$x=-\frac{5}{8}$	
측	8．Solve，algebraically，the inequality $19+x>15+3(x-2) .$	3
尔	$x<5$ or $5>x$	
$\begin{aligned} & \text { İ } \\ & \text { a } \\ & \hline \end{aligned}$	12．The square and rectangle shown below have the same perimeter． Show that the length of the rectangle is $(3 x+1)$ centimetres．	2
姺	$\begin{aligned} & \mathrm{P}(\text { rectangle })=\mathrm{P} \text { (square) } \\ & 2 l+2(x+3)=4(2 x+2) \\ & l+x+3=2(2 x+2) \\ & l=4 x+4-x-3 \\ & l=3 x+1 \text { as required } \end{aligned}$	
$2{ }^{2}$	3．Solve the inequality $5-x>2(x+1)$	3
先	$x<1$	

National 5: Solving Equations/Inequations

	4.	Solve the equation $\frac{2}{x}+9=16$	3
尔	$x=\frac{2}{7}$		
a i 2 0		Solve the inequation $13+4 x<18-7(2-x)$	3
¢	$x>3$		

\begin{tabular}{|c|c|c|}
\hline N
O
N \& \begin{tabular}{l}
3. Two groups of people go to a theatre. \\
Bill buys tickets for 5 adults and 3 children. \\
The total cost of his tickets is \(£ 158 \cdot 25\). \\
(a) Write down an equation to illustrate this information. \\
(b) Ben buys tickets for 3 adults and 2 children. \\
The total cost of his tickets is \(£ 98\). \\
Write down an equation to illustrate this information. \\
(c) Calculate the cost of a ticket for an adult and the cost of a ticket for a child.
\end{tabular} \& 4 \\
\hline \% \& \begin{tabular}{l}
(a) \(5 a+3 c=158 \cdot 25\) \\
(b) \(3 a+2 c=98\) \\
(C) Adult ticket costs \(£ 22 \cdot 50\) \\
(C) Child ticket costs \(£ 15 \cdot 25\)
\end{tabular} \& \\
\hline \& 11. Solve algebraically the system of equations
\[
\begin{aligned}
\& 3 x+2 y=17 \\
\& 2 x+5 y=4
\end{aligned}
\] \& 3 \\
\hline 尔 \& \(x=7, y=-2\) \& \\
\hline \& \begin{tabular}{l}
4. Charlie is making costumes for a school show. \\
One day he made 2 cloaks and 3 dresses. \\
The total amount of material he used was 9.6 square metres. \\
(a) Write down an equation to illustrate this information. \\
(b) The following day Charlie made 3 cloaks and 4 dresses. \\
The total amount of material he used was 13.3 square metres. Write down an equation to illustrate this information. \\
(c) Calculate the amount of material required to make one cloak and the amount of material required to make one dress.
\end{tabular} \& 1
1

4

\hline
\end{tabular}

$\stackrel{3}{4}$	(a) $2 c+3 d=9 \cdot 6$ (b) $3 c+4 d=13 \cdot 3$ A cloak requires $1.5 \mathrm{~m}^{2}$ of material (C) ${ }_{\text {material }}^{A \text { dress requires }} 2.2 \mathrm{~m}^{2}$ of material	
-	13. The graph below shows two straight lines with the equations: - $3 x-y=2$ - $x+3 y=19$ The lines intersect at the point P . Find, algebraically, the coordinates of P.	3
姿	(2.5, 5•5)	
1 0 0 0	8. Find the point of intersection of the straight lines with equations $2 x+y=5$ and $x-3 y=6$.	4
$\stackrel{3}{4}$	$(3,-1)$	
a 0 0 0	10. Andrew and Daisy each book in at the Sleepwell Lodge. (a) Andrew stays for 3 nights and has breakfast on 2 mornings. His bill is £ 145 . Write down an algebraic equation to illustrate this information. (b) Daisy stays for 5 nights and has breakfast on 3 mornings. Her bill is $£ 240$. Write down an algebraic equation to illustrate this information. (c) Find the cost of one breakfast	1 1 1 3

先			
	c	One breakfast costs £5	
N 0 0 0	Q4. A sports centre charges different entrance fees for adults and children. (a) One evening 14 adults and 4 children visited the sports centre. The total collected in entrance fees was $£ 55.00$. Let x pounds be the adult entrance fee and y pounds be the child's entrance fee. Write down an equation in x and y to describe the above information. (b) The following evening 13 adults and 6 children visited the sports centre. The total collected in entrance fees was $£ 54.50$. Write down a second equation in x and y. (c) Calculate the entrance fee for an adult and the entrance fee for a child.		
姺		$14 x+4 y=55 \quad \text { b } \quad 13 x+6 y=54.5$ Adult entrance fee $£ 3.50$. Child entrance fee $£ 1.50$.	
		A jeweller uses two different arrangements of bead and pearls. The first arrangement consists of 2 beads and 5 pearls and has an overall length of 5.2 centimetres. The second arrangement consists of 3 beads and 2 pearls and has an overall length of 5.6 centimetres. Find the length of one bead and the length of one pearl.	6

$\stackrel{n}{4}$	Bead 1.6 centimetres, pearl 0.4 centimetres	
N 2 Q	4. Solve algebraically the system of equations $\begin{aligned} & 4 x+2 y=13 \\ & 5 x+3 y=17 \end{aligned}$	3
安	$x=\frac{5}{2}, y=\frac{3}{2} \quad(\text { or } x=2.5, y=1.5)$	

宕~	11. Change the subject of the formula $s=u t+\frac{1}{2} a t^{2}$ to a.	3
¢	$a=\frac{2(s-u t)}{t^{2}}$	
$\underset{\sim}{2}$	12. Change the subject of the formula $L=\sqrt{4 k t-p}$ to k.	3
$\stackrel{4}{4}$	$k=\frac{L^{2}+p}{4 t}$	
式:	10. Change the subject of the formula $F=\frac{t^{2}+4 b}{c}$ to b.	3
$\stackrel{\sim}{4}$		
a 4 2 0	5. $P=R^{3} b-5$ Change the subject of the formula to R.	3
¢	$R=\sqrt[3]{\frac{P+5}{b}}$	
~	10. Change the subject of the formula to p. $r=3 p-2 t$	2
$\stackrel{3}{4}$	$p=\frac{r+2 t}{3}$	
N	3. Change the subject of the formula $y=a x^{3}+c \quad \text { to } x$	3
$\stackrel{3}{4}$	$x=\sqrt[3]{\frac{y-c}{a}}$	
-	3. Change the subject of the formula below to x. $\frac{x}{c}+a=b$	2
$\stackrel{3}{4}$	$x=c(b-a) \quad$ (or equivalent)	

$\begin{aligned} & \text { I1 } \\ & 0 \\ & \infty \\ & \sim \\ & \sim \end{aligned}$	13．A parabola has equation $y=x^{2}-8 x+19$ ． （a）Write the equation in the form $y=(x-p)^{2}+q$ ． （b）Sketch the graph of $y=x^{2}-8 x+19$ ，showing the coordinates of the turning point and the point of intersection with the y－axis．	2
¢	（a）$y=(x-4)^{2}+3$	
为䢒家	5．Determine the nature of the roots of the function $f(x)=7 x^{2}+5 x-1$ ．	2
$\stackrel{n}{4}$	Two real and distint roots．	
$\begin{aligned} & \text { İ } \\ & 0 \\ & \infty \\ & 0 \\ & \sim \end{aligned}$	4．The diagram below shows part of the graph of $y=a x^{2}$ ． Find the value of a ．	2
先	$a=5$	
$\begin{aligned} & \text { İ } \\ & \underset{\sim}{Z} \end{aligned}$	7．The diagram below shows part of the graph of $y=a x^{2}$ Find the value of a ．	2

\begin{tabular}{|c|c|c|}
\hline 年 \& \(a=5\) \& \\
\hline - \& \begin{tabular}{l}
13. The diagram below shows the path of a small rocket which is fired into the air. The height, \(h\) metres, of the rocket after \(t\) seconds is given by
\[
h(t)=16 t-t^{2}
\]
 \\
(a) After how many seconds will the rocket first be at a height of 60 metres? \\
(b) Will the rocket reach a height of 70 metres? Justify your answer.
\end{tabular} \& 4
3 \\
\hline 年 \& 6 seconds \& \\
\hline \[
\begin{aligned}
\& \text { II } \\
\& \text { a } \\
\& \text { in }
\end{aligned}
\] \& \begin{tabular}{l}
7. The graph below shows part of the parabola with equation of the form
\[
y=(x+a)^{2}+b .
\]
 \\
The minimum turning point \((2,-4)\) is shown in the diagram. \\
(a) State the values of \\
(i) \(a\) \\
(ii) \(b\). \\
(b) Write down the equation of the axis of symmetry of the graph.
\end{tabular} \& 1
1

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 令 \& \begin{tabular}{l}
(a)(i) -2 \\
(ii) -4 \\
(b) \(x=2\)
\end{tabular} \& \\
\hline \[
\begin{aligned}
\& \text { N } \\
\& \text { ì } \\
\& \text { in }
\end{aligned}
\] \& \begin{tabular}{l}
14. A rectangular picture measuring 9 centimetres by 13 centimetres is placed on a rectangular piece of card. \\
The area of the card is 270 square centimetres. \\
There is a border \(x\) centimetres wide on all sides of the picture. \\
\(\uparrow\) \\
(a) (i) Write down an expression for the length of the card in terms of \(x\). \\
(ii) Hence show that \(4 x^{2}+44 x-153=0\). \\
(b) Calculate \(x\), the width of the border. \\
Give your answer correct to one decimal place.
\end{tabular} \& 1

2
2
4

\hline $\stackrel{4}{4}$ \& | (a) (i) $2 x=1$ |
| :--- |
| (ii) proof |
| (b) $X=2.8 \mathrm{~cm}$ | \&

\hline $\underset{\sim}{2}$ \& 6. Determine the nature of the roots of the function $f(x)=7 x^{2}+5 x-1$. \& 2

\hline 毎 \& real and distinct \&

\hline İ
0
0

\sim \& | 10. Sketch the graph of $y=(x-3)^{2}+1$. |
| :--- |
| On your sketch, show clearly the coordinates of the turning point and the point of intersection with the y-axis. | \& 3

\hline
\end{tabular}

${ }_{4}^{4}$		
a 0 0 \sim \sim	12. The diagrams below show a rectangle and a triangle. All measurements are in centimetres. (a) Find an expression for the area of the rectangle. (b) Given that the area of the rectangle is equal to the area of the triangle, show that $x^{2}-2 x-8=0$. (c) Hence find, algebraically, the length and breadth of the rectangle.	1 3 3
$\frac{\sim}{4}$	(a) $(2 x+1)(x+8)$ (b) Proof (c) 2 cm and 9 cm	
-	14. The graph below shows a parabola with equation of the form $y=(x+a)^{2}+b$. The equation of the axis of symmetry of the parabola is $x=-5$. (a) State the value of a. The point $(-3,8)$ lies on the parabola. (b) Calculate the value of b.	1

$\stackrel{4}{4}$	$a=5$	
N	4. Solve the equation $2 x^{2}+5 x-4=0$. Give your answers correct to one decimal place.	3
$\stackrel{3}{4}$	$x=-3 \cdot 1, x=0 \cdot 6$	
2 0 0 0	9. A parabola has equation $y=x^{2}-3 x+7$. Using the discriminant, determine the nature of its roots.	3
$\stackrel{3}{4}$	$b^{2}-4 a c=-19<0$ Therefore there are no real roots	
$\begin{aligned} & \text { Ia } \\ & 0 \\ & 0 \end{aligned}$	11. The equation of the parabola in the diagram above is $y=(x-2)^{2}-9$. (a) State the coordinates of the minimum turning point of the parabola. (b) Find the coordinates of C . (c) A is the point $(-1,0)$. State the coordinates of B .	2 2
$\stackrel{\text { ¢ }}{4}$	11a. $(2,-9)$ b. $C(0,-5) \quad$ c. $\quad B(5,0)$	
$\begin{aligned} & \text { N } \\ & \frac{\pi}{2} \end{aligned}$	8. (b) Use an appropriate formula to solve the quadratic equation $3 x^{2}+3 x-7=0$ Give your answers correct to 1 decimal place.	4
$\stackrel{\text { ¢ }}{4}$	b. $\quad x=1.1$ or -2.1	

$\begin{aligned} & \text { N } \\ & \infty \\ & 0 \end{aligned}$	6. Solve the equation $2 x^{2}+3 x-1=0 .$ Give your answers correct to one decimal place.	4
¢	$x=0.3,-1.8$	
$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$	6. Find the roots of the equation $2 x^{2}+4 x-9=0 .$ Give your answers correct to one decimal place.	4
¢	$x=1.3,-3.3$	
$\begin{aligned} & \text { N } \\ & \text { U } \\ & \text { a } \end{aligned}$	8. Determine the nature of the roots of the equation $(x-2)^{2}-5 x=0 .$	4
華	$b^{2}-4 a c>0$, therefore two real and distinct roots	
$\begin{aligned} & \text { II } \\ & 0 \\ & 0 \end{aligned}$	7. William Watson Fast Foods use a logo based on parts of three identical parabolas. The logo is represented on the diagram below. The first parabola has turning point P and equation $y=(x+2)^{2}-16$ (a) State the coordinates of P . (b) If R is the point $(2,0)$, find the coordinates of Q, the minimum turning point of the second parabola. (c) Find the equation of the parabola with turning point S .	2 1 2
華	a $\mathrm{P}(-2,-16) \quad \mathrm{b} \quad \mathrm{Q}(6,-16) \quad$ c $\quad y=(x-14)^{2}-16$	

$\begin{aligned} & 0 \\ & a \\ & n \\ & a \\ & a \end{aligned}$	Q5. The diagram below shows part of a parabola with equation of the form $y=(x+a)^{2}+b$ (a) Write down the equation of the axis of symmetry of the graph. (b) Write down the equation of the parabola. (c) Find the coordinates of C .	1 2 2
${ }_{4}^{4}$		
20	Q8. Find the values of k such that the equation $2 x^{2}-k x+2=0$ has equal roots.	4
${ }_{4}^{4}$	$k= \pm 4$	
a 0 0 0	Q11. A rectangular lawn has a path, 1 metre wide, on 3 sides as shown. The breadth of the lawn is x metres. The length of the lawn is three times its breadth. The area of the lawn equals the area of the path. (a) Show that $3 x^{2}-5 x-2=0$. (b) Hence find the length of the lawn.	3 4

年	a \quad Area lawn $=$ Area path Area of lawn = Total area of garden - Area of lawn $\begin{aligned} & 3 x \times x=(x+1)(3 x+2)-3 x \times x \\ & 3 x^{2}=3 x^{2}+5 x+2-3 x^{2} \\ & 3 x^{2}-5 x-2=0 \end{aligned}$ b The lawn is 6 metres in length.	
a u u 0	5. Given $2 x^{2}-2 x-1=0$, show that $x=\frac{1 \pm \sqrt{3}}{2}$	4
$\stackrel{3}{4}$	Proof (using quadratic formula)	

National 5: Quadratic Functions

$\begin{aligned} & \text { I } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10．The height of a triangle is $(2 x-5)$ centimetres and the base is $2 x$ centimetres． The area of the triangle is 7 square centimetres． Calculate the value of x ．	5
㐌	$x=\frac{7}{2}$	
㒸气	10．Find the range of values of k such that the equation $k x^{2}-4 x+2=0, \quad k \neq 0$ ， has real roots．	
年	$k \leq 2$	
a a 0 0	7．The graph of $y=x^{2}$ has been moved to the position shown in the diagram． Write down the equation of the graph shown．	2
$\stackrel{n}{4}$	$y=(x-1)^{2}-4$	

N 0 0 \sim \sim \sim	7. Screenwash is available in bottles which are mathematically similar. The smaller bottle has a height of 15 centimetres and a volume of 250 millilitres. The larger bottle has a height of 36 centimetres. Calculate the volume of the larger bottle.	3
年	3456 ml	
N	5. A supermarket sells cylindrical cookie jars which are mathematically similar. The smaller jar has a height of 15 centimetres and a volume of 750 cubic centimetres. The larger jar has a height of 24 centimetres. Calculate the volume of the larger jar.	3
尔	$3072 \mathrm{~cm}^{3}$	

$\begin{aligned} & \text { N } \\ & \text { in } \\ & \text { N } \end{aligned}$	9. The flag at each hole on a golf course is coloured red and blue. The diagram below represents a flag. Triangle QRT represents the red section. PQTS represents the blue section. Triangles PRS and QRT are mathematically similar. The area of triangle QRT is 400 square centimetres. Calculate the area of PQTS, the blue section of the flag.	4
号	$225 \mathrm{~cm}^{2}$	
$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	11. Two pictures are mathematically similar in shape. The cost of each picture is proportional to its area. The large picture costs $£ 13.75$. Find the cost of the small picture.	3
¢	£4.95	

$\begin{aligned} & \text { ㅁ } \\ & \text { 딕 } \end{aligned}$	15. In the diagram below: - TS is parallel to QR - TS=5 centimetres - $\mathrm{QR}=7$ centimetres - $\mathrm{SR}=2.6$ centimetres The length of PS is x centimetres. Calculate the value of x.	3
¢	6.5 cm	
$\begin{aligned} & \text { N } \\ & \text { ín } \end{aligned}$	7. Two perfume bottles are mathematically similar in shape. The smaller one is 6 centimetres high and holds 30 millilitres of perfume. The larger one is 9 centimetres high. What volume of perfume will the larger one hold?	3
尔	101.25 ml	

N	5. Shampoo is available in travel size and salon size bottles. The bottles are mathematically similar. travel salon The travel size contains 200 millilitres and is 12 centimetres in height. The salon size contains 1600 millilitres. Calculate the height of the salon size bottle.	3
¢	24 centimetres	
N 足 a	12. In triangle $A B C$, $B C=8$ centimetres $A C=6$ centimetres $P Q$ is parallel to $B C$ M is the midpoint of $A C$. Q lies on $A C, x$ centimetres from M, as shown in the diagram. (a) Write down an expression for the length of $A Q$. (b) Show that $\mathrm{PQ}=\left(4+\frac{4}{3} x\right)$ centimetres.	1 3
¢	(a) $\mathrm{AQ}=x+3$ (b) $\mathrm{PQ}=\frac{x+3}{6} \times 8=\frac{4(x+3)}{3}=\frac{4}{3} x+4$ as required.	

N N N Nu	12. Part of the graph $y=3 \cos x^{\circ}-1$ is shown below. Calculate the x-coordinates of the points where the graph cuts the x-axis.	4
尔	70.5, 289.5	
2 $\stackrel{2}{2}$ $\underset{N}{2}$	10. The graph of $y=a \sin (x+b)^{\circ}, 0 \leq x \leq 360$, is shown below. Write down the values of a and b.	2
¢	$a=3, b=-40$	
$\stackrel{\sim}{\sim}$	12. Solve the equation $11 \cos x^{\circ}-2=3$, for $0 \leq x \leq 360$.	3
¢	$x^{\circ}=63^{\circ}, 297^{\circ}$	

$\begin{aligned} & \text { a } \\ & \stackrel{n}{2} \end{aligned}$	6. Part of the graph of $y=a \sin b x^{\circ}$ is shown in the diagram. State the values of a and b.	2
尔	$a=4, b=3$	
$\begin{aligned} & \text { II } \\ & \text { a } \\ & \end{aligned}$	9. Write the following in order of size starting with the smallest. $\cos 90^{\circ} \quad \cos 100^{\circ} \quad \cos 300^{\circ}$ Justify your answer.	2
年	$\cos 100^{\circ}, \cos 90^{\circ}, \cos 300^{\circ} ;$ with justification	
-	14. Solve the equation $2 \tan x^{\circ}+5=-4$, for $0 \leq x \leq 360$.	3
¢	$x=102 \cdot 5,282 \cdot 5$	
$\begin{aligned} & 12 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	7. Part of the graph of $y=\cos b x^{\circ}$ is shown in the diagram. State the value of b.	1

\begin{tabular}{|c|c|c|}
\hline 管 \& \(b=3\) \& \\
\hline N \& \begin{tabular}{l}
15．A wind turbine has three blades as shown below． \\
The height，\(h\) metres，of the tip of blade \(A\) above the ground in each rotation is given by
\[
h=40+23 \cos x^{\circ}, \quad 0 \leq x<360
\] \\
where \(x\) is the angle blade A has turned clockwise from its vertical position． \\
（a）Calculate the height of the tip of blade A after it has turned through an angle of \(60^{\circ}\) ． \\
（b）Find the minimum height of the tip of blade A above the ground． \\
（c）Calculate the values of \(x\) for which the tip of blade \(A\) is 61 metres above the ground．
\end{tabular} \& 1

1

\hline 管 \& 51.5 metres \&

\hline N \& 9．（a）Solve the equation

$$
4 \tan x^{\circ}+5=0, \quad 0 \leq x \leq 360
$$ \& 3

\hline 尔 \& $x=128.66^{\circ}, 308.66^{\circ}$ \&

\hline
\end{tabular}

8.

Stare the values of a and b.
If cos $60^{\circ}=0.5$, state two values for x for which cos $x^{\circ}=$

National 5：Trig Graphs and Equations

䒾	$a=4, b=-30$	
$\begin{aligned} & \text { N } \\ & \text { i } \end{aligned}$	11．（a）Solve the equation $2 \tan x^{\circ}+7=0, \quad 0 \leq x \leq 360$	3
¢	$x=105.9^{\circ}, 285.9^{\circ}$	
$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	9．Part of the graph of $y=\operatorname{acos} b x^{\circ}$ is shown in the diagram． State the values of a and b ．	2
$\stackrel{3}{4}$	$\mathrm{a}=4, \mathrm{~b}=3$	
$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$	Q3．Solve algebraically the equation $4 \sin x^{\circ}+1=-2 \quad 0 \leq x<360$	3
¢	$x=228.6^{\circ}, 311.4^{\circ}$	
\％心	8．Sketch the graph of $y=\sin 2 x^{\circ}, \quad 0 \leq x \leq 360$ ．	3
先	Q8．	
$\begin{aligned} & \text { N} \\ & \text { ù } \\ & \text { a } \end{aligned}$	11．（a）Solve algebraically the equation $\sqrt{3} \sin x^{\circ}-1=0 \quad 0 \leq x<360$	3
苂	a $\quad x=35.3^{\circ}, 144.7^{\circ}(1$ decimal place $)$	

\begin{tabular}{|c|c|c|}
\hline a
免
a \& \begin{tabular}{l}
10. The graph shown below has an equation of the form \(y=\cos (x-a)^{\circ}\). \\
Write down the value of \(a\).
\end{tabular} \& 1 \\
\hline 每 \& \(a=30\) \& \\
\hline N
2
Q
a \& \begin{tabular}{l}
11. Emma goes on the "Big Eye". \\
Her height, \(h\) metres, above the ground is given by the formula
\[
h=-31 \cos t^{\circ}+33
\] \\
where \(t\) is the number of seconds since the start. \\
(a) Calculate Emma's height above the ground 20 seconds after the start. \\
(b) When will Emma first reach a height of 60 metres above the ground? \\
(c) When will she next be at a height of 60 metres above the ground?
\end{tabular} \& 2

3

1

\hline ¢ \& | (a) 3.87 metres (1 decimal place) |
| :--- |
| (b) 150.6 seconds |
| (c) 209.4 seconds | \&

\hline
\end{tabular}

İ $\stackrel{1}{1}$ \sim	11．Simplify $\tan ^{2} x^{\circ} \cos ^{2} x^{\circ}$ Show your working．	2
年	$\sin ^{2} x^{\circ}$	
N	9. （b）Show that｜ $\tan x \cos x=\sin x$	2
¢	b．Proof using $\tan x=\frac{\sin x}{\cos x}$	
N 0 0 0	（b）Prove that 11. $\sin ^{3} x+\sin x \cos ^{2} x=\sin x$	3
年	b $\quad \sin ^{3} x+\sin x \cos ^{2} x=\sin x\left(\sin ^{2} x+\cos ^{2} x\right)=\sin x \quad\left(\right.$ Since $\left.\sin ^{2} x+\cos ^{2} x=1\right)$	
N	Simplify Q11．$\quad \tan x^{\circ} \cos x^{\circ}$ ．	2
号	Proof using the fact that $\tan x=\frac{\sin x}{\cos x}$	

$\begin{aligned} & \text { N } \\ & \text { a } \\ & \text { ou } \\ & \text { an } \end{aligned}$	15. A yacht sails from a harbour H to a point C , then to a point D as shown below. C is 50 kilometres due east of H . D is on a bearing of 040° from C and is 79 kilometres from H . (a) Calculate the size of angle CDH. (b) Hence, calculate the bearing on which the yacht must sail to return directly to the harbour.	4 2
¢	(a) 29° (b) 249°	
$\begin{aligned} & \text { N} \\ & \text { in } \\ & \text { in } \end{aligned}$	10. The top of a table is in the shape of a regular hexagon. The three diagonals of the hexagon, which are shown as dotted lines in the diagram below, each have length 40 centimetres. Calculate the area of the top of the table.	4
$\stackrel{3}{4}$	$1039.2 \mathrm{~cm}^{2}$	
$\begin{aligned} & \text { N } \\ & \text { n } \\ & \text { à } \end{aligned}$	5. In triangle $P Q R, P Q=8$ centimetres, $Q R=3$ centimetres and angle $P Q R=120^{\circ}$. Calculate the length of PR.	3

\begin{tabular}{|c|c|c|}
\hline 宸 \& 9.8 cm \& \\
\hline \[
\begin{aligned}
\& \text { a } \\
\& \text { İ } \\
\& \underset{\sim}{7}
\end{aligned}
\] \& \begin{tabular}{l}
5．In triangle KLM \\
－\(K M=18\) centimetres \\
－\(\quad \sin \mathrm{K}=0.4\) \\
－ \(\sin L=0.9\) \\
Calculate the length of LM．
\end{tabular} \& 3 \\
\hline 尔 \& 8 cm \& \\
\hline \[
\begin{aligned}
\& \text { N} \\
\& \underset{\sim}{J} \\
\& \underset{\sim}{n}
\end{aligned}
\] \& \begin{tabular}{l}
10．In a race，boats sail round three buoys represented by \(A, B\) ，and \(C\) in the diagram below． \\
\(B\) is 8 kilometres from \(A\) on a bearing of \(060^{\circ}\) ． \\
\(C\) is 11 kilometres from \(B\) ． \\
A is 13 kilometres from \(C\) ． \\
（a）Calculate the size of angle \(A B C\) ． \\
（b）Hence find the size of the shaded angle．
\end{tabular} \& 3

2

\hline 每 \& | （a） 84.8° |
| :--- |
| （b） 155.2^{0} | \&

\hline \[
$$
\begin{aligned}
& \text { N } \\
& \stackrel{\sim}{\partial}
\end{aligned}
$$

\] \& | 3．Triangle $A B C$ is shown below． |
| :--- |
| Calculate the length of $A B$ ． | \& 3

\hline 年 \& 0.78 km \&

\hline
\end{tabular}

$\begin{aligned} & \text { N } \\ & \stackrel{n}{2} \end{aligned}$	13. In the diagram below P, Q and R represent the positions of Portlee, Queenstown and Rushton respectively. Portlee is 25 kilometres due South of Queenstown. From Portlee, the bearing of Rushton is 072°. From Queenstown, the bearing of Rushton is 128°. Calculate the distance between Portlee and Rushton. Do not use a scale drawing.	4
妾	23.8 km	
$\begin{aligned} & \text { N } \\ & 0 \\ & \text { ö } \end{aligned}$	8. A set of stepladders has legs 150 centimetres and 140 centimetres long. When the stepladder is fully open, the angle between the longer leg and the ground is 66°. Calculate x°, the size of the angle between the shorter leg and the ground.	3
尔	78°	

$\begin{aligned} & \text { N } \\ & \stackrel{0}{0} \\ & \sim \end{aligned}$	16. In the diagram below: - DE is perpendicular to $A C$. - $A D=4$ centimetres. - $\mathrm{DB}=6$ centimetres. - $\mathrm{AE}=\mathrm{EC}=3$ centimetres. Calculate the length of $B C$. Give your answer correct to one decimal place.	4
¢	6.8 cm	
$\begin{aligned} & \text { I } \\ & \stackrel{1}{\lambda} \end{aligned}$	7. In triangle DEF: - $\mathrm{DE}=8$ centimetres - $\mathrm{EF}=12$ centimetres - $\sin \mathrm{E}=\frac{2}{3}$ Calculate the area of triangle DEF.	2
年	$32 \mathrm{~cm}^{2}$	
N	3. A piece of land is in the shape of a triangle as shown. - $P Q=250$ metres - $P R=180$ metres - angle $Q P R=147^{\circ}$ The owner wishes to build a fence along the side $Q R$. Calculate the length of the fence.	3

$\frac{n}{4}$	413m	
$\begin{aligned} & N \\ & N \\ & \text { N } \\ & \text { N } \end{aligned}$	10. In the diagram below D, E and F represent the positions of Dunbridge, Earlsford and Fairtown respectively. Dunbridge is 15 kilometres west of Earlsford. From Dunbridge, the bearing of Fairtown is 126°. From Earlsford the bearing of Fairtown is 230°. Calculate the distance between Dunbridge and Fairtown. Do not use a scale drawing.	4
$\frac{n}{4}$	9.9 km	
$\frac{N}{2}$	4. Gordon and Brian leave a hostel at the same time. Gordon walks on a bearing of 045° at a speed of 4.4 kilometres per hour. Brian walks on a bearing of 100° at a speed of 4.8 kilometres per hour. If they both walk at stead speeds, how far apart will they be after 2 hours?	5
$\frac{n}{4}$	8.5 km	

a \vdots 0 0	7. A regular pentagon ABCDE is drawn in a circle, centre 0 , with radius 10 centimetres. Calculate the area of the regular pentagon.	5
$\frac{n}{4}$	$237.76 \mathrm{~cm}^{2}$	
$\begin{aligned} & \text { N } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	9. A TV signal is sent from a transmitter (T) via a satellite (S) to a village (V), as shown in the diagram. The village is 500 kilometres from the transmitter. The signal is sent out at an angle of 35° and is received in the village at an angle of 40°. Calculate the height of the satellite above the ground.	5
$\frac{n}{4}$	190.8km	
N \vdots 0 0	10. The diagram shows a parallelogram, PQRS. (a) Calculate the size of angle PQR. Do not use a scale drawing. (b) Calculate the area of the parallelogram.	3 3
$\stackrel{n}{4}$	$\begin{array}{lll}\text { a } & 78.6^{\circ} & \text { b } \\ \end{array}$	

N 0 0 0	Q6. A garden, in the shape of a quadrilateral, is represented in the diagram. Calculate: (a) the length of the diagonal BD; Do not use a scale drawing. (b) the area of the garden.	3
每		
N N U 0	2. Calculate the area of triangle $P Q R$.	4
尔	$187.5 \mathrm{~cm}^{2}$ (1 decimal place)	
N 2 U 0	8. David walks on a bearing of 050° from hostel A to viewpoint $V, 5$ kilometres away. Hostel B is due east of hostel A. Susie walks on a bearing of 294° from hostel B to the same viewpoint. Calculate the length of $A B$, the distance between the two hostels.	5

年	$\mathrm{AB}=11.05$ kilometres (2 decimal places)	
$\begin{aligned} & \text { a } \\ & \text { i } \\ & 0 \end{aligned}$	13. Triangle $A B C$ is right-angled at B. The dimensions are shown. (a) Calculate the area of triangle $A B C$. $B D$, the height of triangle $A C B$ is drawn as shown. (b) Use your answer to part (a) to calculate the height BD.	1
尔	(a) $150 \mathrm{~m}^{2} \quad\left(\sin 90^{\circ}=1\right)$ (b) 12 metres	

$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	6．The diagram below shows the position of three towns． Lowtown is due west of Midtown． The distance from －Lowtown to Midtown is 75 kilometres． －Midtown to Hightown is 110 kilometres． －Hightown to Lowtown is 85 kilometres． Is Hightown directly north of Lowtown？ Justify your answer．	4
管	no，with valid reason．	
$\begin{gathered} \text { ̃ } \\ \text { え̀ } \end{gathered}$	7．Triangles A and B are shown below． The triangles are placed together to form the larger triangle shown below． Is this larger triangle right－angled？ Justify your answer．	3
姺	no，with valid reason．	

| | 11. In the diagram, OABCDE is a regular hexagon with centre M.
 Vectors a and \mathbf{b} are represented by $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$ respectively. |
| :--- | :--- | :--- | :--- | :--- |

N	2. The diagram shows a cube placed on top of a cuboid, relative to the coordinate axes. A is the point $(8,4,6)$. Write down the coordinates of B and C.	2
$\stackrel{3}{4}$	$\mathrm{B}(8,4,10), \mathrm{C}(4,0,10)$	
$$	4. Find $\|\mathbf{u}\|$, the magnitude of vector $\mathbf{u}=\left(\begin{array}{r}6 \\ -13 \\ 18\end{array}\right)$.	2
$\stackrel{\square}{4}$	23	
N $\stackrel{y}{n}$ \sim \sim	5. The vectors p and q are shown in the diagram below. Find the resultant vector $\mathrm{p}+\mathrm{q}$. Express your answer in component form.	2

㚣	$\binom{-1}{-2}$	
	1. Given $\mathbf{p}=\binom{4}{-6}$ and $\mathbf{q}=\binom{-5}{-1}$. Find the resultant vector $\frac{1}{2} \mathbf{p}+\mathbf{q}$. Express your answer in component form.	2
毎	$\binom{-3}{-4}$	
	7. The diagram shows a rectangular based pyramid, relative to the coordinate axes. - A is the point $(2,0,0)$. - V is the point $(5,2,6)$. (a) Write down the coordinates of B . (b) Calculate the length of edge $A V$ of the pyramid.	1 3
	(a) $(8,4,0)$ (b) 7	

$\begin{aligned} & \text { N } \\ & 0 \\ & \text { o } \end{aligned}$	3. The diagram below shows parallelogram $A B C D$. $\overrightarrow{A B}$ represents vector \mathbf{u} and $\overrightarrow{B C}$ represents vector \mathbf{v}. Express $\overrightarrow{B D}$ in terms of \mathbf{u} and \mathbf{v}.	1
$\stackrel{n}{4}$	v-u	
a à a	5. The diagram shows a square-based pyramid placed on top of a cube, relative to the coordinate axes. The height of the pyramid is half of the height of the cube. A is the point $(6,0,0)$. The point C is directly above the centre of the base. Write down the coordinates of B and C .	2
$\stackrel{\square}{4}$	B (0, 6, 6), C ($3,3,9$)	
N	1. Find $\|\mathbf{v}\|$, the magnitude of vector $\mathbf{v}=\left(\begin{array}{r}18 \\ -14 \\ 3\end{array}\right)$.	2
年	23	

N	8. In the diagram below, $\overrightarrow{R Q}$ and $\overrightarrow{P Q}$ represent the vectors \mathbf{c} and \mathbf{d} respectively. (a) Express $\overrightarrow{P R}$ in terms of \mathbf{c} and \mathbf{d}. The line QP is extended to T . - $T P=P Q$ - V is the midpoint of PR (b) Express $\overrightarrow{\mathrm{TV}}$ in terms of \mathbf{c} and \mathbf{d}. Give your answer in simplest form.	1
先	(a) $\mathrm{d}-\mathrm{c}$ (b) $\frac{3}{2} d-\frac{1}{2} c$	
2 2 2 0	6. Two vectors are defined as $\boldsymbol{u}=\binom{2}{-5}$ and $\boldsymbol{v}=\binom{-4}{3}$. (a) Find the resultant vector $\boldsymbol{u}+3 \boldsymbol{v}$. (b) Find $\|\boldsymbol{u}+3 \boldsymbol{v}\|$.	2
尔	6a. $\quad\binom{-10}{4} \quad$ b. $\quad 2 \sqrt{29}$	
a 0 0 0	5. Vector \boldsymbol{u} has components $\left(\begin{array}{r}3 \\ -2 \\ -1\end{array}\right)$ and vector \boldsymbol{v} has components $\left(\begin{array}{r}2 \\ -4 \\ 1\end{array}\right)$. Calculate $\|4 \boldsymbol{u}-2 \boldsymbol{v}\|$.	2

$\stackrel{3}{4}$	10	
N 0 0 0	11. Look at the cuboid shown on the coordinate diagram. The coordinates of point E are (5,3,1) (a) State the coordinates of F (b) State the coordinates of G (c) What is the shortest distance between points D and C ?	4
$\stackrel{3}{4}$	11a. $\begin{array}{lllll}\text { F } & 5,3,0) & \text { b. } & G(0,3,0) & \text { c. } \\ \end{array}$	
2 0 0 0	6. The diagram shows a square based pyramid $P Q R S T$. Express $\overrightarrow{\mathrm{RP}}$ in terms of $\boldsymbol{f}, \boldsymbol{g}$ and \boldsymbol{h}.	3
¢	$\boldsymbol{h}-\boldsymbol{f}-\boldsymbol{g}$ or equivalent	

N 0 0 \sim \sim \sim	1．Beth normally cycles a total distance of 64 miles per week． She increases her total distance by 15% each week for the next three weeks． How many miles does she cycle in the third week？ Give your answer to the nearest mile．	3
岀	97 miles	
－	9． 480000 tickets were sold for a tennis tournament last year． This represents 80% of all the available tickets． Calculate the total number of tickets that were available for this tournament．	3
¢	600000	
N	1．There are 964 pupils on the roll of Aberleven High School． It is forecast that the roll will decrease by 15% per year． What will be the expected roll after 3 years？ Give your answer to the nearest ten．	3
每	590	
N N i	1．A house is valued at $£ 240000$ ． Its value is predicted to rise by $2 \cdot 8 \%$ per annum． Calculate its predicted value after 2 years．	3
姺	£253 628 （－16）	
N N i	8．James paid $£ 297 \cdot 50$ for a laptop in a sale． The discount in the sale was 15% ． Calculate the original price of the laptop．	3
年	£350	
N $\stackrel{0}{1}$ \sim in	1．A drinks manufacturer is reducing the sugar content of one of their fizzy drinks by 8% per year over the next 3 years． The sugar content of a standard can is currently 35 grams． Calculate the sugar content of a standard can after 3 years．	3
¢	27．（25408）grams	

N $\stackrel{\text { N }}{\text { N }}$ N	2．A necklace is valued at $£ 1200$ ． Its value is expected to increase by 4.5% per year over the next 3 years． Calculate the expected value of the necklace after this time． Give your answer to the nearest pound．	3
先	£1369	
N	5．A theatre group sold 4830 tickets for their show． This was 15% more than they sold last year． How many tickets did they sell last year？	3
尔	4200	
a 2 0 0	1．The population of a city is increasing at a steady rate of 2.4% per annum． The current population is 528000 ． What is the expected population in 4 years？ Give your answer to the nearest thousand．	3
年	581000	
N N 0 0	2．A microwave oven is sold for $£ 150$ ． This price includes VAT at 20\％． Calculate the price of the microwave oven without VAT．	3
年	£125	
N N 0 0	8．The population of Newtown is 50000 ． The population of Newtown is increasing at a steady rate of 5\％per annum． The population of Auldtown is 108000. The population of Auldtown is decreasing at a steady rate of 20% per annum． How many years will it take until the population of Newtown is greater than the population of Auldtown？	5
年	3 years	
N 0 0 0	1．Bacteria in a test－tube increase at the rate of 4.6% per hour． At 12 noon，there are 50000 bacteria． At 5 pm ，how many bacteria will be present？ Give your answer correct to 3 significant figures．	4

尔	62600	
a 0 0 0	5．Marmalade is on special offer． Each jar on special offer contains 12.5% more than the standard jar． A jar on special offer contains 450 g of marmalade． How much does the standard jar contain？	3
¢	400 g	
$\begin{aligned} & \text { a } \\ & 0 \\ & 0 \end{aligned}$	Q1．The average Scottish house price is $£ 153100$ ． The average price is expected to rise by 2.5% per month． What will the average Scottish house price be in 3 months？ Give your answer correct to three significant figures．	3
尔	£165 000	
$\begin{aligned} & \text { N } \\ & \text { u } \\ & \text { a } \end{aligned}$	3．In the evening，the temperature in a greenhouse drops by 10.4% per hour． At 8 p．m．the temperature was 28° Celsius． Find the temperature at 11 p．m．	3
尔	$20^{\circ} \mathrm{C}$（nearest degree）	

$\begin{aligned} & \text { II } \\ & \text { a } \\ & 0 \end{aligned}$	11. Cleano washing powder is on special offer. Each box on special offer contains 20% more powder than the standard box. A box on special offer contains 900 grams of powder. How many grams of powder does the standard box contain?	3
管	750g	
N	2. A boat was bought for $£ 35000$. Its value decreases by 8% each year. How much will the boat be worth after 4 years?	3
尔	£25 073.75	

National 5：Fractions and BODMAS

$\begin{aligned} & i \\ & i_{n} \\ & \underset{\sim}{\infty} \\ & \text { a } \end{aligned}$	1．Evaluate $2 \frac{3}{8} \div \frac{5}{16} \text {. }$	2
㐌	$7 \frac{3}{5}$	
－	1．Evaluate $\frac{5}{12} \times 2 \frac{2}{9}$ ． Give the answer in simplest form．	2
¢ ¢	$\frac{25}{27}$	
a $\stackrel{4}{4}$ in	1．Evaluate $6 \frac{1}{5}-2 \frac{1}{3}$	2
尔	$3 \frac{13}{15}$ or $\frac{58}{15}$	
I 0 0 0 \sim	2．Evaluate $\frac{3}{4}\left(\frac{1}{3}+\frac{2}{7}\right)$ ． Give your answer in its simplest form．	2
¢	$\frac{13}{28}$	
¿	3．Evaluate $1 \frac{5}{6} \div \frac{3}{4}$ ． Give your answer in its simplest form．	2
$\stackrel{\square}{4}$	$\frac{22}{9}$ or $2 \frac{4}{9}$	
a \vdots d 0	1．Evaluate $3 \frac{2}{5}-1 \frac{3}{4}$	2
先	$1 \frac{13}{20}$	

National 5: Fractions and BODMAS

\begin{tabular}{|c|c|c|}
\hline N \& \begin{tabular}{l}
4. A runner has recorded her times, in seconds, for six different laps of a running track. \\
\(\begin{array}{llllll}53 \& 57 \& 58 \& 60 \& 55 \& 56\end{array}\) \\
(a) (i) Calculate the mean of these lap times. \\
Show clearly all your working. \\
(ii) Calculate the standard deviation of these lap times. \\
Show clearly all your working. \\
(b) She changes her training routine hoping to improve her consistency. After this change, she records her times for another six laps. The mean is 55 seconds and the standard deviation \(3 \cdot 2\) seconds. Has the new training routine improved her consistency? Give a reason for your answer.
\end{tabular} \& 1

3
3
1

\hline ¢ \& | (a) (i) $\bar{x}=56.5$ $\text { (ii) } s=2.4$ |
| :--- |
| (b) No, standard deviation is greater. No, times are more spread out. | \&

\hline $$
\underset{\sim}{\sim}
$$ \& 5. The standard deviation of $1,2,2,2,8$ is equal to \sqrt{a}. Find the value of a. \& 3

\hline ¢ \& $\mathrm{a}=8$ \&

\hline \[
$$
\begin{aligned}
& \text { İ } \\
& \text { in }
\end{aligned}
$$

\] \& | 10. Ten couples took part in a dance competition. |
| :--- |
| The couples were given a score in each round. |
| The scores in the first round were |
| $\begin{array}{llllllllll}16 & 27 & 12 & 18 & 26 & 21 & 27 & 22 & 18 & 17\end{array}$ |
| (a) Calculate the median and semi-interquartile range of these scores. |
| (b) In the second round, the median was 26 and the semi-interquartile range was $2 \cdot 5$. |
| Make two valid comparisons between the scores in the first and second rounds. | \& 3

2

\hline 㐌 \& | (a) Median $=19.5$, SIQR $=4.5$ |
| :--- |
| (b) Valid comments - On average the second round's scores are higher. The second round's scores are more consistent. | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline N
\(\stackrel{1}{1}\)
\(\sim\) \& \begin{tabular}{l}
6. Jack called his internet provider on six occasions to report connection problems. \\
On each occasion he noted the length of time he had to wait before speaking to an adviser. \\
The times (in minutes) were as follows:
\[
\begin{array}{llllll}
13 \& 16 \& 10 \& 22 \& 5 \& 12
\end{array}
\] \\
(a) Calculate the mean and standard deviation of these times. \\
(b) Sophie also called the same internet provider, on several occasions, to report connection problems. \\
Her mean waiting time was 15 minutes and the standard deviation was 4.3 minutes. \\
Make two valid comments comparing Sophie's waiting times with Jack's waiting times.
\end{tabular} \& 4

2

\hline ¢ \& | (a) Mean $=13$ minutes, |
| :--- |
| Standard Deviation $=5.7$ minutes |
| (b) Valid comments - On average, Sophie waited longer. Sophie's waiting times were less spread out. | \&

\hline İ
İ

N \& | 2. The number of calls received by the police was recorded over 10 days. The results are shown below. |
| :--- |
| Find the semi-interquartile range of this data. | \& 2

\hline 尔 \& 16 \&

\hline İ
İ

N \& | 12. Gym members are asked to fill out a questionnaire to rate the quality of service provided. |
| :--- |
| They are asked to give a rating on a scale of 1 to 6 . |
| The ratings given by five members were as follows: $\begin{array}{lllll} 1 & 4 & 6 & 3 & 6 \end{array}$ |
| In its simplest form, the standard deviation of these ratings can be written as $\frac{a \sqrt{b}}{2}$. |
| Find the values of a and b. | \& 4

\hline 尔 \& $a=3, b=2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline a
a
0 \& \begin{tabular}{l}
2. Two groups of 6 students are given the same test. \\
(a) The marks of Group A are:
\[
\begin{array}{llllll}
73 \& 47 \& 59 \& 71 \& 48 \& 62 .
\end{array}
\] \\
Use an appropriate formula to calculate the mean and the standard deviation. \\
Show clearly all your working. \\
(b) In Group B, the mean is 60 and the standard deviation is 29.8. Compare the results of the two groups.
\end{tabular} \& 4

2

\hline 年 \& | 2a. $\quad \bar{x}=60, \mathrm{~s}=11.03$ (2dp) |
| :--- |
| 2b. On average the marks of both groups are the same since $60=60$ |
| However, the marks from Group A are much more consistent since $11.03<29.8$. | \&

\hline a
0
0

0 \& | 10. A sample of students was asked how many times each had visited the cinema in the last three months. |
| :--- |
| The results are shown below. |
| (a) From the above data, find the median, the lower quartile and the upper quartile. |
| (b) Calculate the semi-interquartile range. |
| (c) The same sample of students was asked how many times each had attended a football match in the same three months. |
| The data had a median of 5 and a semi-interquartile range of 3 . |
| Make two appropriate comments comparing students visiting the cinema and students attending a football match. | \& 2

\hline 尔 \& | 10a. \quad median $=3, Q_{1}=1.5, Q_{3}=4$ |
| :--- |
| b. 1.25 |
| 10c. On average the students went to more football matches than to the cinema since $5>3$. |
| The number of times the students visited the cinema was more consistent since $1 \cdot 25<3$. | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline N
0
0
0 \& \& \begin{tabular}{l}
(a) The price, in pence, of a carton of milk in six different supermarkets is shown below.
\[
\begin{array}{llllll}
66 \& 70 \& 89 \& 75 \& 79 \& 59
\end{array}
\] \\
Use an appropriate formula to calculate the mean and standard deviation of these prices. \\
Show clearly all your working. \\
(b) In six local shops, the mean price of a carton of milk is 73 pence with a standard deviation of 17.7 pence. \\
Compare the supermarket prices with those of the local shops.
\end{tabular} \& 4 \\
\hline \(\stackrel{\sim}{4}\) \& 3 b . \& \begin{tabular}{l}
\[
\bar{x}=73, \mathrm{~s}=10.5
\] \\
On average, milk is the same price in both types of shop since \(73=73\). \\
The price of milk is more consistent in supermarkets since \(10 \cdot 5<17 \cdot 7\).
\end{tabular} \& \\
\hline \& 6. \& \begin{tabular}{l}
A hotel books taxis from a company called Quick-Cars. \\
The receptionist notes the waiting time for every taxi ordered over a period of two weeks. These times, in minutes, are shown below. \\
(a) For the given data, calculate: \\
(i) the median \\
(ii) the lower quartile \\
(iii) the upper quartile \\
(b) Calculate the semi-interquartile range. \\
In another two week period, the hotel books taxis from a company called Fast-Cabs. \\
The median waiting time for Fast-Cabs is found to be 27.5 minutes and the semi-interquartile range for Fast-Cabs is found to be 2.5 minutes. \\
(c) Use this information to compare the two companies.
\end{tabular} \& 1
1
1
1
1

2

\hline 尔 \& \& | (i) 27.5 |
| :--- |
| (ii) $\mathrm{Q}_{1}=13$ |
| (iii) $\mathrm{Q}_{3}=35$ |
| 11 |
| On average, both companies have the same waiting time since $27.5=27.5$ |
| Waiting times for Fast-Cabs are more consistent since $2.5<11$ | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline a
0
0
0 \& \begin{tabular}{l}
4. The marks scored by a group of students in their October test are listed below. \\
(a) Calculate: \\
(i) The median mark; \\
(ii) The semi-interquartile range for the data. \\
The teacher arranges extra revision classes for the students before their next test in December. \\
In this test the median mark is 67 and the semi-interquartile range is 7 . \\
(b) Make two appropriate comments comparing the marks in the October and December tests.
\end{tabular} \& 2 \\
\hline ¢ \& \begin{tabular}{l}
\(\mathrm{a}(\mathrm{i}) \quad\) Median \(=58.5\) \\
(ii) \(\mathrm{SIQR}=11\) \\
b On average, after the extra revision classes, there was an improvement in the students' marks since \(67>58 \cdot 5\). \\
After the extra classes the marks were more consistent since \(7<11\).
\end{tabular} \& \\
\hline N
0
0
0 \& \begin{tabular}{l}
Q2. The heights, in millimetres, of six seedlings are given below.
\[
\begin{array}{llllll}
15 \& 18 \& 14 \& 17 \& 16 \& 19
\end{array}
\] \\
(a) Calculate: \\
(i) the mean; \\
(ii) the standard deviation; \\
of these heights. \\
Show clearly all your working. \\
(b) Later the same six seedlings are measured again. Each has grown by 4 millimetres. \\
State: \\
(i) the mean; \\
(ii) the standard deviation; \\
of these new heights.
\end{tabular} \& 1
3

1
1

\hline
\end{tabular}

