

Expressions and Functions

FORMULAE LIST

Circle:
The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product: a.b $=|a||b| \cos \theta$, where θ is the angle between a and b

$$
\text { or } \quad a . b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } a=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } b=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A
\end{aligned}
$$

$$
\cos 2 A=\cos ^{2} A-\sin ^{2} A
$$

$$
=2 \cos ^{2} A-1
$$

$$
=1-2 \sin ^{2} A
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+c$

1.(a)(i) Simplify $\log _{5} 7 a+\log _{5} 2 b$
(ii) Simplify $\log _{6} 4 \mathrm{~b}+\log _{6} 3 \mathrm{c}$
(iii) Simplify $\log _{4} 9 \mathrm{~d}+\log _{4} 5$ a
(iv) Simplify $\log _{8} 7 y+\log _{8} 3 s$
1.(b)(i) Express $\log _{a} x^{3}-\log _{a} x^{2}$ in the form $k \log _{a} x$
(ii) Express $\log _{a} x^{5}-\log _{a} x^{2}$ in the form $k \log _{a} x$
(iii) Express $\log _{a} x^{3}-\log _{a} x$ in the form $k \log _{a} x$
(iv) Express $\log _{a} x^{6}-\log _{a} x^{5}$ in the form $k \log _{a} x$
2. (a) Solve $\log _{2}(x-5)=5$
(b) Solve $\log _{5}(y+2)=2$
(c) Solve $\log _{3}(z-1)=3$
(d) Solve $\log _{3}(d+2)=2$
3. (a) The diagram below shows two right-angled triangles.
(i) Write down the values of $\sin C$ and $\cos D$.
(ii) Find the exact value of $\cos (C-D)$

3. (b) The diagram below shows two right-angled triangles.
(i) Write down the values of $\sin C$ and $\cos D$.
(ii) Find the exact value of $\cos (C-D)$

(c) The diagram below shows two right-angled triangles.
(i) Write down the values of $\cos C$ and $\sin D$.
(ii) Find the exact value of $\cos (C+D)$

(d) The diagram below shows two right-angled triangles.
(i) Write down the values of $\cos C$ and $\sin D$.
(ii) Find the exact value of $\cos (C+D)$

4. (a) Show that $\sin 2 x+\sin x=\sin x(2 \cos x+1)$
(b) Show that $\cos x+\sin 2 x=\cos x(1+2 \sin x)$
(c) Show that $2 \sin x-\sin 2 x=2 \sin x(1-\cos x)$
(d) Show that $4 \sin 2 x-2 \cos x=2 \cos x(4 \sin x-1)$
5. (a) Express $4 \cos x+8 \sin x$ in the form $k \sin (x-a)$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$
(b) Express $3 \cos x+8 \sin x$ in the form $k \sin (x-a)$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$
(c) Express $2 \cos \mathrm{x}+6 \sin \mathrm{x}$ in the form $k \sin (\mathrm{x}-\mathrm{a})$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$
(d) Express $4 \cos x+7 \sin x$ in the form $k \sin (x-a)$ where $\mathrm{k}>0$ and $0 \leq \mathrm{a} \leq 360$
6. The diagram shows the graph of $y=f(x)$ with a maximum turning point at $(-2,3)$ and a minimum turning point at $(1,-2)$.
(a) Sketch the graph of $y=f(x+3)-2$
(b) Sketch the graph of $y=f(x+4)-3$
(c) Sketch the graph of $y=f(x-2)+3$
(d) Sketch the graph of $y=f(x-3)-6$
7. (a) The diagram shows the graph of $y=\log _{b}(x-a)$ Determine the values of a and b

7.(b) \quad The diagram shows the graph of $y=\log _{b}(x-a)$ Determine the values of a and b

7.(c) \quad The diagram shows the graph of $y=\log _{b}(x-a)$ Determine the values of a and b

7.(d) The diagram shows the graph of $y=\log _{b}(x-a)$ Determine the values of a and b

8. (a) Sketch the graph of $y=a \cos (x+60)^{\circ}$ for $a>0$ and $0 \leq x \leq 360^{\circ}$, clearly showing the maximum and minimum values and where it cuts the x-axis.
(b) Sketch the graph of $y=b \sin (x+45)^{\circ}$ for $a>0$ and $0 \leq x \leq 360^{\circ}$, clearly showing the maximum and minimum values and where it cuts the x-axis.
(c) Sketch the graph of $y=a \cos (x-60)^{\circ}$ for $a>0$ and $0 \leq x \leq 360^{\circ}$, clearly showing the maximum and minimum values and where it cuts the x-axis.
(d) Sketch the graph of $y=b \sin (x-45)^{\circ}$ for $a>0$ and $0 \leq x \leq 360^{\circ}$, clearly showing the maximum and minimum values and where it cuts the x-axis.
9. (a) The diagram below shows the graph of $y=a \sin (b x)+c$

Write down the values of a, b and c.
(b) The diagram below shows the graph of $y=a \sin (b x)+c$

Write down the values of a, b and c .
9. (c) The diagram below shows the graph of $y=a \sin (b x)+c$

Write down the values of a, b and c .
(d) The diagram below shows the graph of $y=a \sin (b x)+c$

Write down the values of a, b and c .
10. (a) The functions f and g defined on suitable domains, are given by $f(x)=2 x+5$ and $g(x)=\sqrt{x}$.

Find an expression for $g(f(x))$.
(b) The functions f and g defined on suitable domains, are given by $f(x)=3 x+6$ and $g(x)=\sqrt{x}$.

Find an expression for $g(f(x))$.
(c) The functions f and g defined on suitable domains, are given by $f(\mathrm{x})=4 \mathrm{x}+10$ and $g(\mathrm{x})=\sqrt{x}$.

Find an expression for $g(f(x))$.
(d) The functions f and g defined on suitable domains, are given by $f(x)=2 x+7$ and $g(x)=\sqrt{x}$.

Find an expression for $g(f(x))$.
11. (a) Find the range of values of $y=4 \sin x+2$
(b) Find the range of values of $y=3 \sin x-1$
(c) Find the range of values of $y=2 \cos x+3$
(d) Find the range of values of $y=5 \cos x-5$
12. (a) Explain why $x=2$ is not in the domain of $f(x)=\sqrt{5 x-20}$
(b) Explain why $\mathrm{x}=2$ is not in the domain of $\mathrm{h}(\mathrm{x})=\frac{5}{x-2}$
(c) Explain why $\mathrm{x}=5$ is not in the domain of $\mathrm{h}(\mathrm{x})=\frac{x+3}{x-5}$
(d) Explain why $x=1$ is not in the domain of $f(x)=\sqrt{2 x-5}$
13. (a) A function is given by $f(x)=6 x+7$. Find the inverse function $f^{-1}(x)$.
(b) A function is given by $f(x)=5 x+8$. Find the inverse function $f^{-1}(x)$.
(c) A function is given by $f(x)=8 x+9$. Find the inverse function $f^{-1}(x)$.
(d) A function is given by $f(x)=2 x+1$. Find the inverse function $f^{-1}(x)$.
14. TPQRS is a pyramid with rectangular base PQRS.

(a) TPQRS is a pyramid with rectangular base PQRS (as above). If the vectors $\overrightarrow{\mathrm{SP}}, \overrightarrow{\mathrm{SR}}, \overrightarrow{\mathrm{ST}}$ are given by:

$$
\overrightarrow{S P}=\left(\begin{array}{c}
3 \\
-8 \\
-6
\end{array}\right) \quad \overrightarrow{S R}=\left(\begin{array}{c}
\mathbf{1} \\
\mathbf{1 2} \\
\mathbf{9}
\end{array}\right) \quad \overrightarrow{S T}=\left(\begin{array}{c}
-\mathbf{7} \\
\mathbf{0} \\
\mathbf{1 1}
\end{array}\right)
$$

Express $\overrightarrow{P T}$ in component form
(b) TPQRS is a pyramid with rectangular base PQRS (see diagram on left) If the vectors $\overrightarrow{\mathrm{SP}}, \overrightarrow{\mathrm{SR}}, \overrightarrow{\mathrm{ST}}$ are given by:
$\overrightarrow{S P}=\left(\begin{array}{c}4 \\ -6 \\ -5\end{array}\right) \quad \overrightarrow{S R}=\left(\begin{array}{c}\mathbf{1} \\ \mathbf{1 2} \\ 9\end{array}\right) \quad \overrightarrow{S T}=\left(\begin{array}{c}-\mathbf{6} \\ \mathbf{2} \\ \mathbf{1 2}\end{array}\right)$

Express $\overrightarrow{P T}$ in component form
(c) TPQRS is a pyramid with rectangular base PQRS (see diagram on left) If the vectors $\overrightarrow{\mathrm{SP}}, \overrightarrow{\mathrm{SR}}, \overrightarrow{\mathrm{ST}}$ are given by:

$$
\overrightarrow{S P}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \quad \overrightarrow{S R}=\left(\begin{array}{c}
1 \\
12 \\
9
\end{array}\right) \quad \overrightarrow{S T}=\left(\begin{array}{c}
-4 \\
\mathbf{6} \\
\mathbf{5}
\end{array}\right)
$$

Express $\overrightarrow{P T}$ in component form
(d) TPQRS is a pyramid with rectangular base PQRS. (see diagram on left) If the vectors $\overrightarrow{\mathrm{SP}}, \overrightarrow{\mathrm{SR}}, \overrightarrow{\mathrm{ST}}$ are given by:

$$
\overrightarrow{S P}=\left(\begin{array}{l}
8 \\
1 \\
6
\end{array}\right) \quad \overrightarrow{S R}=\left(\begin{array}{c}
\mathbf{1} \\
\mathbf{1 2} \\
9
\end{array}\right) \quad \overrightarrow{S T}=\left(\begin{array}{c}
-\mathbf{2} \\
\mathbf{5} \\
\mathbf{6}
\end{array}\right)
$$

Express $\overrightarrow{P T}$ in component form
15. (a) Show that the points $P(-1,4,-8), Q(1,3,-3)$, and $R(5,1,7)$ are collinear.
(b) Show that the points $P(1,3,-5), Q(3,7,-8)$, and $R(7,15,-14)$ are collinear.
(c) Show that the points $P(-2,4,9), Q(1,2,3)$, and $R(7,-2,-9)$ are collinear.
(d) Show that the points $P(3,6,9), Q(-1,10,10)$, and $R(-9,18,12)$ are collinear.
16. (a) The points E, F and G lie in a straight line, as shown. F divides $E G$ in the ratio 3:4.

Find the coordinates of F.

16. (b) The points E, F and G lie in a straight line, as shown. F divides $E G$ in the ratio 2:5.

Find the coordinates of F.
$\mathrm{G}(11,4,-32)$
F

$$
\mathrm{E}(-10,-3,3)
$$

(c) The points E, F and G lie in a straight line, as shown. F divides $E G$ in the ratio 3:5.

Find the coordinates of F .
C(-11,-2,4) F
(d) The points E, F and G lie in a straight line, as shown. F divides $E G$ in the ratio 1:4.

Find the coordinates of F.

$$
\mathrm{E}(10,-2,4)
$$

17. (a) Points B, C and D have coordinates $B(21,-8,0), C(20,-7,7)$ and $D(17,-6,2)$.

Find the size of the acute angle BDC.
(b) Points B, C and D have coordinates $B(15,-7,4), C(10,-2,2)$ and $D(18,-1,3)$.

Find the size of the acute angle $B D C, B$
(c) Points B, C and D have coordinates $\mathrm{B}(11,-4,1), \mathrm{C}(16,-5,3)$ and $D(12,-8,1)$.

Find the size of the acute angle BDC.
(d) Points B, C and D have coordinates $B(15,-4,2), C(30,-8,8)$ and $D(14,-3,1)$.

ANSWERS

1(a) (i) $\log _{5} 14 a b$ (ii) $\log _{6} 12 \mathrm{bc}$ (iii) $\log _{4} 45 \mathrm{ad}$ (iv) $\log _{8} 21$ sy
1(b) (i) $\log _{a} x$ (ii) $3 \log _{a} x$ (iii) $2 \log _{a} x$ (iv) logax
2.
(a) $x=37$
(b) $y=23$
(c) $z=28$
(d) $d=7$
3.
(a)(i) $\frac{4}{5}, \frac{2}{\sqrt{5}}$ (ii) $\frac{2}{\sqrt{5}}$
(b) (i) $\frac{4}{5}, \frac{5}{\sqrt{29}}$
(ii) $\frac{23}{5 \sqrt{29}}$
(c) (i) $\frac{3}{\sqrt{34}}, \frac{5}{13}$ (ii) $\frac{11}{13 \sqrt{34}}$
(d) (i) $\frac{3}{5}, \frac{4}{\sqrt{65}}$
(ii) $\frac{1}{\sqrt{65}}$
4. Solution is shown
5.
(a) $\mathrm{k}=4 \sqrt{5}, \mathrm{a}=333.4^{\circ}$
(b) $\mathrm{k}=\sqrt{73}, \mathrm{a}=339.4^{\circ}$
(c) $\mathrm{k}=2 \sqrt{10}, \mathrm{a}=341.6^{\circ}$
(d) $\mathrm{k}=\sqrt{65}, \mathrm{a}=330.3^{\circ}$
6. (a) move 3 left and down 2 (b) move 4 left and down 3
(c) move 2 right and up 3
(d) move 3 right and down 6
7.
(a) $a=3, b=5$
(b) $a=2, b=7$
(c) $a=1, b=6$
(d) $a=5, b=3$
8. (a) cos graph moved 60° left. Cuts x at 30° and 210°. Max/min a and -a.
(b) sin graph moved 45° left. Cuts x at 135° and 315°. Max/min b and -b.
(c) cos graph moved 60° right. Cuts x at 150° and 330°. Max/min a and -a.
(d) sin graph moved 30° right. Cuts x at 30 and 210. Max/min b and -b.
9.
(a) $a=2, b=2, c=-1$
(b) $a=3, b=1, c=-1$
(c) $\mathrm{a}=3, \mathrm{~b}=2, \mathrm{c}=2$
(d) $\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=1$
10.
(a) $g(f(x))=\sqrt{2 x+5}$,
(b) $\mathrm{g}(\mathrm{f}(\mathrm{x}))=\sqrt{3 \mathrm{x}+6}$
(c) $g(f(x))=\sqrt{4 x+10}$
(d) $g(f(x))=\sqrt{2 x+7}$
11.
(a) $-2 \leq 4 \sin x+2 \leq 6$
(b) $-4 \leq 3 \sin x-1 \leq 2$
(c) $1 \leq 2 \cos x+3 \leq 5$
(d) $-10 \leq 5 \cos x-5 \leq 0$
12. (a) \& (d) can't take square root of a negative number
(b) \& (c) you can't have zero as the denominator of a fraction.
13.
(a) $\mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}-7}{6}$
(b) $\quad \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}-8}{5}$
(c) $\mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}-9}{8}$
(d) $\quad \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}-1}{2}$
14.
(a) $\left(\begin{array}{c}-10 \\ \mathbf{8} \\ 17\end{array}\right)$
(b) $\left(\begin{array}{c}-10 \\ 8 \\ 17\end{array}\right)$
(c) $\left(\begin{array}{c}-6 \\ 5 \\ 5\end{array}\right)$
(d) $\left(\begin{array}{c}-10 \\ \mathbf{4} \\ 0\end{array}\right)$
15. For each question show they are collinear and interpret ratio
16.
(a) $\mathrm{F}=(-2,1,-11)$
(b) $\mathrm{F}=(-4,-1,-7)$
(c) $F=(-8,4,-8)$
(d) $F=(11,-3,8)$
17.
(a) 82.1°
(b) 58.2°
(c) 68.9°
(d) 27.1°

