

Expressions and Functions Unit Assessment Practice

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a.b = |a||b|\cos\theta$, where θ is the angle between a and b

or
$$a.b = a_1b_1 + a_2b_2 + a_3b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

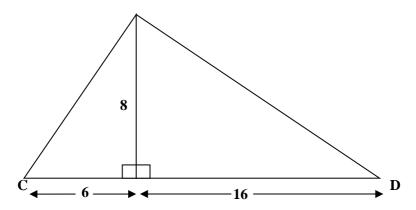
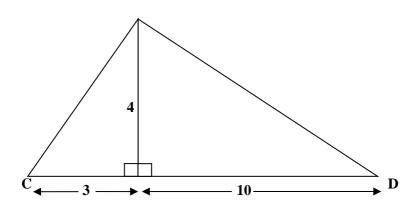
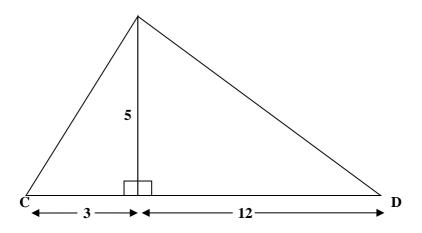

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

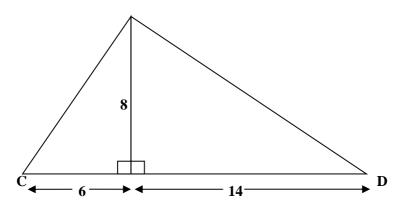
f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{\cos ax} + C$
cos ax	a
	$\frac{1}{a}\sin ax + c$


- **1.(a)(i)** Simplify log ₅7a + log ₅2b
 - (ii) Simplify $\log_{6}4b + \log_{6}3c$
 - (iii) Simplify log 49d + log 45a
 - (iv) Simplify $\log_{8}7y + \log_{8}3s$
- **1.(b)(i)** Express $\log_a x^3 \log_a x^2$ in the form $k \log_a x$
 - (ii) Express $\log_a x^5 \log_a x^2$ in the form $k \log_a x$
 - (iii) Express $\log_a x^3 \log_a x$ in the form $k \log_a x$
 - (iv) Express $\log_a x^6 \log_a x^5$ in the form $k \log_a x$
 - **2. (a)** Solve $\log_2(x-5) = 5$
 - (b) Solve log₅(y + 2) = 2
 - (c) Solve $\log_3(z 1) = 3$
 - (d) Solve $\log_3(d + 2) = 2$
 - 3. (a) The diagram below shows two right-angled triangles.(i) Write down the values of sin C and cos D.

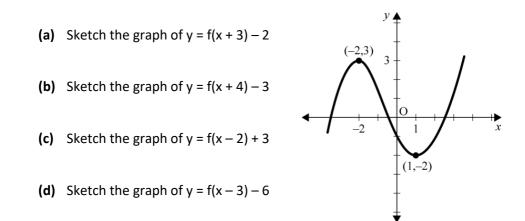
(ii) Find the exact value of cos (C – D)



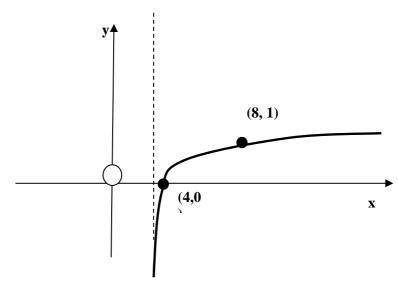
3. (b) The diagram below shows two right-angled triangles.(i) Write down the values of sin C and cos D.

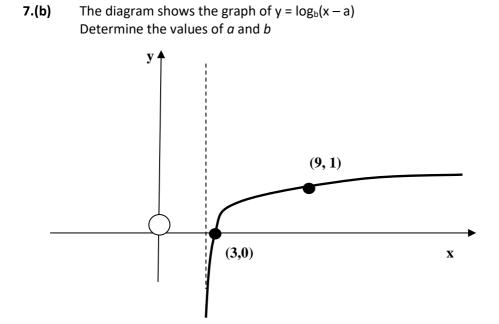

(ii) Find the exact value of cos (C – D)

- (c) The diagram below shows two right-angled triangles.(i) Write down the values of cos C and sin D.
 - (ii) Find the exact value of cos (C + D)

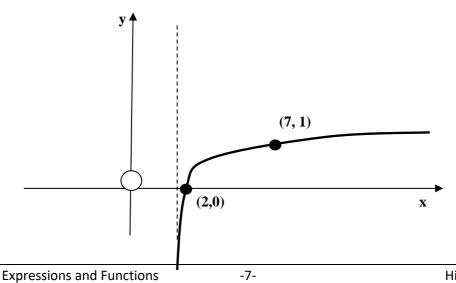


- (d) The diagram below shows two right-angled triangles.
 - (i) Write down the values of cos C and sin D.
 - (ii) Find the exact value of cos (C + D)

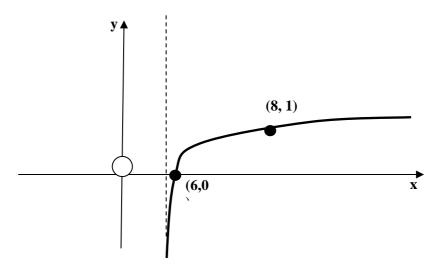



- 4. (a) Show that $\sin 2x + \sin x = \sin x (2\cos x + 1)$
 - (b) Show that $\cos x + \sin 2x = \cos x (1 + 2 \sin x)$
 - (c) Show that $2\sin x \sin 2x = 2\sin x (1 \cos x)$
 - (d) Show that $4\sin 2x 2\cos x = 2\cos x (4\sin x 1)$
 - 5. (a) Express $4 \cos x + 8 \sin x$ in the form $k \sin (x a)$ where k > 0 and $0 \le a \le 360$
 - (b) Express $3 \cos x + 8 \sin x$ in the form $k \sin (x a)$ where k > 0 and $0 \le a \le 360$
 - (c) Express $2 \cos x + 6 \sin x$ in the form $k \sin (x a)$ where k > 0 and $0 \le a \le 360$
 - (d) Express $4 \cos x + 7 \sin x$ in the form $k \sin (x a)$ where k > 0 and $0 \le a \le 360$

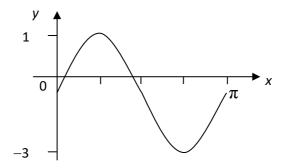
6. The diagram shows the graph of y = f(x) with a maximum turning point at (-2, 3) and a minimum turning point at (1, -2).



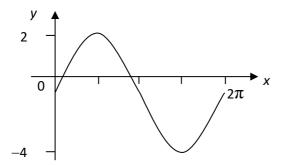
7. (a) The diagram shows the graph of $y = \log_b(x - a)$ Determine the values of *a* and *b*



7.(c) The diagram shows the graph of $y = \log_{b}(x - a)$ Determine the values of *a* and *b*


Higher

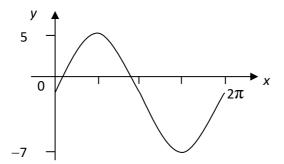
7.(d) The diagram shows the graph of $y = \log_{b}(x - a)$ Determine the values of *a* and *b*


- 8. (a) Sketch the graph of $y = a \cos (x + 60)^{\circ}$ for a > 0 and $0 \le x \le 360^{\circ}$, clearly showing the maximum and minimum values and where it cuts the x-axis.
 - (b) Sketch the graph of $y = b \sin (x + 45)^{\circ}$ for a > 0 and $0 \le x \le 360^{\circ}$, clearly showing the maximum and minimum values and where it cuts the x-axis.
 - (c) Sketch the graph of $y = a \cos (x 60)^{\circ}$ for a > 0 and $0 \le x \le 360^{\circ}$, clearly showing the maximum and minimum values and where it cuts the x-axis.
 - (d) Sketch the graph of $y = b \sin (x 45)^{\circ}$ for a > 0 and $0 \le x \le 360^{\circ}$, clearly showing the maximum and minimum values and where it cuts the x-axis.

9. (a) The diagram below shows the graph of $y = a \sin(bx) + c$

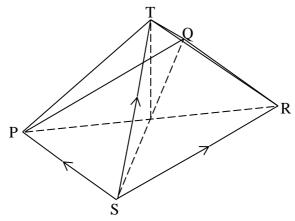

Write down the values of a, b and c.

(b) The diagram below shows the graph of y = a sin (bx) + c


Write down the values of a, b and c.

9. (c) The diagram below shows the graph of $y = a \sin(bx) + c$

Write down the values of a, b and c.


(d) The diagram below shows the graph of y = a sin (bx) + c

Write down the values of a, b and c.

- **10.** (a) The functions f and g defined on suitable domains, are given by f(x) = 2x + 5 and $g(x) = \sqrt{x}$. Find an expression for g(f(x)).
 - (b) The functions f and g defined on suitable domains, are given by f(x) = 3x + 6 and $g(x) = \sqrt{x}$. Find an expression for g(f(x)).
 - (c) The functions f and g defined on suitable domains, are given by f(x) = 4x + 10 and $g(x) = \sqrt{x}$. Find an expression for q(f(x)).
 - (d) The functions f and g defined on suitable domains, are given by f(x) = 2x + 7 and $g(x) = \sqrt{x}$. Find an expression for q(f(x)).
- **11.** (a) Find the range of values of $y = 4 \sin x + 2$
 - (b) Find the range of values of $y = 3 \sin x 1$
 - (c) Find the range of values of $y = 2 \cos x + 3$
 - (d) Find the range of values of $y = 5 \cos x 5$
- **12.** (a) Explain why x = 2 is not in the domain of $f(x) = \sqrt{5x 20}$
 - (b) Explain why x = 2 is not in the domain of $h(x) = \frac{5}{x-2}$
 - (c) Explain why x = 5 is not in the domain of h(x) = $\frac{x+3}{x-5}$
 - (d) Explain why x = 1 is not in the domain of $f(x) = \sqrt{2x 5}$

- **13.** (a) A function is given by f(x) = 6x + 7. Find the inverse function $f^{-1}(x)$.
 - (b) A function is given by f(x) = 5x + 8. Find the inverse function $f^{-1}(x)$.
 - (c) A function is given by f(x) = 8x + 9. Find the inverse function $f^{-1}(x)$.
 - (d) A function is given by f(x) = 2x + 1. Find the inverse function $f^{-1}(x)$.
- **14.** TPQRS is a pyramid with rectangular base PQRS.

(a) TPQRS is a pyramid with rectangular base PQRS (as above). If the vectors \overrightarrow{SP} , \overrightarrow{SR} , \overrightarrow{ST} are given by:

$$\overrightarrow{SP} = \begin{pmatrix} 3 \\ -8 \\ -6 \end{pmatrix} \qquad \overrightarrow{SR} = \begin{pmatrix} 1 \\ 12 \\ 9 \end{pmatrix} \qquad \overrightarrow{ST} = \begin{pmatrix} -7 \\ 0 \\ 11 \end{pmatrix}$$

Express \overrightarrow{PT} in component form

(b) TPQRS is a pyramid with rectangular base PQRS (see diagram on left) If the vectors \overrightarrow{SP} , \overrightarrow{SR} , \overrightarrow{ST} are given by:

$$\overrightarrow{SP} = \begin{pmatrix} 4 \\ -6 \\ -5 \end{pmatrix} \qquad \overrightarrow{SR} = \begin{pmatrix} 1 \\ 12 \\ 9 \end{pmatrix} \qquad \overrightarrow{ST} = \begin{pmatrix} -6 \\ 2 \\ 12 \end{pmatrix}$$

Express \overrightarrow{PT} in component form

(c) TPQRS is a pyramid with rectangular base PQRS (see diagram on left) If the vectors \overrightarrow{SP} , \overrightarrow{SR} , \overrightarrow{ST} are given by:

$$\overrightarrow{SP} = \begin{pmatrix} 2\\1\\0 \end{pmatrix} \qquad \overrightarrow{SR} = \begin{pmatrix} 1\\12\\9 \end{pmatrix} \qquad \overrightarrow{ST} = \begin{pmatrix} -4\\6\\5 \end{pmatrix}$$

Express \overrightarrow{PT} in component form

(d) TPQRS is a pyramid with rectangular base PQRS. (see diagram on left) If the vectors \overrightarrow{SP} , \overrightarrow{SR} , \overrightarrow{ST} are given by:

$$\overrightarrow{SP} = \begin{pmatrix} 8\\1\\6 \end{pmatrix} \qquad \overrightarrow{SR} = \begin{pmatrix} 1\\12\\9 \end{pmatrix} \qquad \qquad \overrightarrow{ST} = \begin{pmatrix} -2\\5\\6 \end{pmatrix}$$

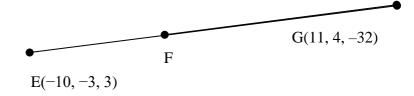
Express \overrightarrow{PT} in component form

15. (a) Show that the points P (−1, 4, −8), Q (1, 3, −3), and R (5, 1, 7) are collinear.


(b) Show that the points P (1, 3, −5), Q (3, 7, −8), and R (7, 15, −14) are collinear.

(c) Show that the points P (−2, 4, 9), Q (1, 2, 3), and R (7, −2, −9) are collinear.

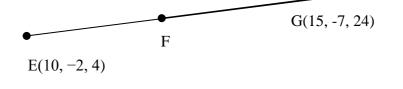
(d) Show that the points P (3, 6, 9), Q (-1, 10, 10), and R (-9, 18, 12) are collinear.


16. (a) The points E, F and G lie in a straight line, as shown. F divides EG in the ratio 3:4.

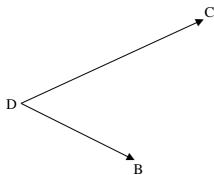
Find the coordinates of F.

16. (b) The points E, F and G lie in a straight line, as shown. F divides EG in the ratio 2:5.

Find the coordinates of F.


(c) The points E, F and G lie in a straight line, as shown. F divides EG in the ratio 3:5.

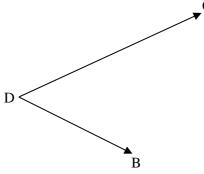
Find the coordinates of F.



(d) The points E, F and G lie in a straight line, as shown. F divides EG in the ratio 1:4.

Find the coordinates of F.

17. (a) Points B, C and D have coordinates B(21, -8, 0), C(20, -7, 7) and D(17, -6, 2).


Find the size of the acute angle BDC.

(b) Points B, C and D have coordinates B(15, -7, 4), C(10, -2, 2) and D(18, -1, 3).

Find the size of the acute angle BDC. $^{
m B}$

D

(c) Points B, C and D have coordinates B(11, -4, 1), C(16, -5, 3) and D(12, -8, 1).

Find the size of the acute angle BDC.

(d) Points B, C and D have coordinates B(15, -4, 2), C(30, -8, 8) and D(14, -3, 1).

ANSWERS

1(a)	(i) log₅14ab (ii) log ₆ 12bc (iii) log₄45ad (iv) log ₈ 21sy
1(b)	(i) log _a x (ii) 3log _a x (iii) 2log _a x (iv) logax
2.	(a) x = 37 (b) y = 23
	(c) z = 28 (d) d = 7
3.	(a)(i) $\frac{4}{5}$, $\frac{2}{\sqrt{5}}$ (ii) $\frac{2}{\sqrt{5}}$ (b) (i) $\frac{4}{5}$, $\frac{5}{\sqrt{29}}$ (ii) $\frac{23}{5\sqrt{29}}$ (c) (i) $\frac{3}{\sqrt{34}}$, $\frac{5}{13}$ (ii) $\frac{11}{13\sqrt{34}}$
	(d) (i) $\frac{3}{5}$, $\frac{4}{\sqrt{65}}$ (ii) $\frac{1}{\sqrt{65}}$
4.	Solution is shown
5.	(a) $k = 4\sqrt{5}$, $a = 333.4^{\circ}$ (b) $k = \sqrt{73}$, $a = 339.4^{\circ}$
	(c) $k = 2\sqrt{10}$, $a = 341.6^{\circ}$ (d) $k = \sqrt{65}$, $a = 330.3^{\circ}$
6.	(a) move 3 left and down 2 (b) move 4 left and down 3
	(c) move 2 right and up 3 (d) move 3 right and down 6
7.	(a) $a = 3, b = 5$ (b) $a = 2, b = 7$ (c) $a = 1, b = 6$ (d) $a = 5, b = 3$
8.	(a) cos graph moved 60°left. Cuts x at 30° and 210°. Max/min a and –a.
	(b) sin graph moved 45°left. Cuts x at 135° and 315°. Max/min b and –b.
	(c) cos graph moved 60°right. Cuts x at 150° and 330°. Max/min a and –a.
	(d) sin graph moved 30° right. Cuts x at 30 and 210. Max/min b and –b.
9.	(a) a = 2, b = 2, c = -1 (b) a = 3, b = 1, c = -1
	(c) a = 3, b = 2, c = 2 (d) a = 1, b = 1, c = 1
10.	(a) $g(f(x)) = \sqrt{2x+5}$,
	(b) $g(f(x)) = \sqrt{3x+6}$ (c) $g(f(x)) = \sqrt{4x+10}$ (d) $g(f(x)) = \sqrt{2x+7}$
11.	(a) $-2 \le 4 \sin x + 2 \le 6$ (b) $-4 \le 3 \sin x - 1 \le 2$ (c) $1 \le 2 \cos x + 3 \le 5$ (d) $-10 \le 5 \cos x - 5 \le 0$
12.	(a) & (d) can't take square root of a negative number
	(b) & (c) you can't have zero as the denominator of a fraction.

(b) & (c) you can't have zero as the denominator of a fraction.

13. (a)
$$f^{-1}(x) = \frac{x-7}{6}$$
 (b) $f^{-1}(x) = \frac{x-8}{5}$
(c) $f^{-1}(x) = \frac{x-9}{8}$ (d) $f^{-1}(x) = \frac{x-1}{2}$
14. (a) $\binom{-10}{8}_{17}$ (b) $\binom{-10}{8}_{17}$
(c) $\binom{-6}{5}_{5}$ (d) $\binom{-10}{4}_{0}$

15. For each question show they are collinear and interpret ratio

(c) 68.9° (d) 27.1°