Logs and Exponentials

EF1. Logarithms and Exponentials

Section A - Revision Section

This section will help you revise previous learning which is required in this topic.

R1 Revision of Surds and Indices

- 1. Express each of the following in its simplest form.
 - (a) $\sqrt{8}$ (b) $\sqrt{12}$ (c) $\sqrt{50}$
 - (d) $\sqrt{45}$ (e) $3\sqrt{32}$ (f) $5\sqrt{40}$
- 2. Express each of the following with a *rational denominator*.
 - (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{20}{\sqrt{2}}$ (c) $\frac{4}{5\sqrt{2}}$

3. Simplify the following writing the answers with positive indices only.

- (a) $x^2 \times x^5$ (b) $y^{-3} \times y^7$ (c) $x^6 \div x^4$
- (d) $y^{-3} \div y^{-1}$ (e) $(2a^4)^3$ (f) $(p^{-4})^{-2}$
- (g) $\frac{x^3 \times y^5}{x^2 \times y^2}$ (h) $\frac{a^{-1} \times b^3}{a^{-2} \times b}$ (i) $5x^3 \times 2x^{-3}$

(j)
$$\frac{3x^5y^3}{6x^2y^5}$$
 (k) $3p^5 \times 2p^{\frac{1}{2}}$ (l) $4r^8 \div 2r^{-2}$

(m)
$$a^{-\frac{1}{2}} \times a^{\frac{3}{2}}$$
 (n) $r^{-\frac{1}{3}} \times r^{\frac{1}{3}}$ (o) $x^2(x^3+1)$

- 4. Write in the form $ax^m + bx^n + \cdots$
 - (a) $x^{-2}(x-3)$ (b) $\frac{1}{x^2}(x^3+2x)$ (c) $\frac{1}{x}(3x^2+2x)$
 - (d) $\frac{1}{\sqrt{x}}(\frac{1}{\sqrt{x}}-1)$ (e) $(2x^5-3)(x+4x^{-2})$ (f) $(\frac{1}{x}+1)^2$

(g)
$$\frac{1}{\sqrt[3]{x^2}}$$
 (h) $\frac{1}{2\sqrt[3]{x}}$ (i) $\frac{1}{5\sqrt[4]{x^3}}$
(j) $\frac{3}{5\sqrt[2]{x^5}}$ (k) $\frac{2}{7\sqrt[3]{x^2}}$ (l) $\frac{6}{\sqrt[3]{x}}$
(m) $\frac{x^2 + 3x + 5}{x}$ (n) $\frac{2x^3 + x^2 + x}{\sqrt{x}}$ (o) $\frac{x^4 - 6x + x^3}{x^2}$

(p)
$$\frac{x+5}{\sqrt[3]{x^3}}$$
 (q) $\frac{3+x^3}{3x^2}$ (r) $\frac{x+2}{\sqrt{x}}$

(s)
$$\frac{(x+1)(x+2)}{x}$$
 (t) $\frac{(x-1)(x+3)}{5\sqrt[3]{x^4}}$ (u) $\frac{3x^2+5x+1}{2x^2}$

R2. Revision of Straight Line

- 1. Find the gradient and equation each of the straight line between the following points
 - (a) A(2,-1) and B(4,7) (b) X(-1,1) and Y(5,13)
 - (c) R(-2,-5) and S(2,-7) (d) Q(-1,3) and T(-1,7)

2. Write down the gradient and y-intercept of the following lines

(a)	y = 3x - 2	(b)	y = x + 4	(c)	y = 4x
(d)	y = -2x - 1	(e)	y - 2x = 3	(f)	y - x + 3 = 0

3. Find the equation of the straight line shown

- 4. Find the equation of straight line, in the form y = mx + c, passing through each point with the given gradient.
 - (a) gradient = 5 passing through (4,7)
 - (b) gradient = $\frac{2}{3}$ passing through (2, -3)
 - (c) gradient = -2 passing through (-5, 1)
- 5. Find the equation of the line parallel to y = 3x + 5 which passes through the point (3, 7).
- 6. Find the equation of the line parallel to $y = \frac{1}{2}x 7$ which passes through the point (-2, 4).
- 7. Find the equation of the line parallel to 2x + y = -3 which passes through the point (-1, -3).
- 8. Find the equation of the line parallel to 5x 2y = 7 which passes through the point (3, 7).
- **9.** Find the equation of the line parallel to 2x y 7 = 0 which passes through the point (-1, 7).
- **10.** Find the equation of the line parallel to 3x + 5y + 1 = 0 which passes through the point (4, 0).

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test for Exponentials and Logarithms (Expressions and Functions 1.1)

- 1. (a) Simplify $log_45r + log_47s$. (b) Simplify $log_53x + log_54y$.
 - (c) Simplify $log_3 2a + log_3 5b$.
- (a) Express $log_a x^7 log_a x^3$ in the form $k log_a x$. 2.
 - (b) Express $log_a p^8 log_a p^2$ in the form $k log_a p$.
 - (c) Express $log_a T^9 log_a T^4$ in the form $klog_a T$.
- 3. Solve $log_4(x-2) = 1$.
- 4. Solve $log_5(x + 3) = 2$.
- Solve $log_{16}(x-5) = \frac{1}{2}$. 5.
- (a) Simplify $log_a 8 log_a 2$ (b) Simplify $log_52 + log_550 - log_54$ 6.
 - (c) Simplify $3log_42 + log_48$

- 7. Solve $log_a x - log_a 7 = log_a 3$ for x > 0.
- 8. Find x if $4log_x 6 - 2log_x 4 = 1$.
- 9. (a) Simplify $log_h 10 + log_h 4$ (b) Simplify $log_4 320 - log_4 5$ (c) Simplify $2log_36 - log_34$
- Given that $log_4 8 + log_4 q = 1$, what is the value of q? 10.

Section C - Operational Skills Section

This section provides problems with the operational skills associated with Exponentials and Logs

01 I can convert between exponential and logarithmic forms.

- 1. Given $b = e^t$ which of the following is true:
 - (a) $log_t b = e$
 - (b) $log_e b = t$
- **2.** Given $log_n x = y$ which of the following is true:
 - (a) $n^y = x$
 - (b) $x^y = n$

O2 I can use the three main laws of logarithms to simplify expressions, including those involving natural logarithms.

- 1. Simplify
 - a. $log_x 3 + log_x 5 log_x 7$
 - b. $log_a 32 2log_a 4$

2. Show that (a)
$$\frac{\log_3 8}{\log_3 2} = 3$$
. (b) $\frac{\log_b 9a^2}{\log_b 3a} = 2$.

- 3. If $log_3x = 2log_3y 3log_3z$ find an expression for x in terms of y and z.
- 4. Find a if $log_a 64 = \frac{3}{2}$.
- 5. Simplify $3log_e(2e) 2log_e(3e)$ expressing your answer in the form $A + log_eB log_eC$ where A, B and C are whole numbers.

O3 I can solve logarithmic and exponential equations using the laws of logarithms.

- 1. Given the equation $y = 3 \times 4^x$ find the value of x when y = 10 giving your answer to 3 significant figures.
- **2.** Given the equation $A = A_0 e^{-kt}$, find, to 3 significant figures:
 - (a) *A* when $A_0 = 5$, $k = 0 \cdot 23$ and t = 20.
 - (b) k when A = 70, $A_0 = 35$ and t = 20.
 - (c) t when A = 1000, $A_0 = 10$ and k = 0.01.
- 3. Solve $log_4x + log_4(x+6) = 2$, x > 0.
- 4. Solve the equation $log_5(3-2x) + log_5(2+x) = 1$, $-2 < x < \frac{3}{2}$.
- 5. (a) Given that $log_4 x = P$, show that $log_{16} x = \frac{1}{2}P$.
 - (b) Solve $log_3 x + log_9 x = 12$.
- **6.** The curve with equation $y = log_3(x 1) 2 \cdot 2$, where x > 1, cuts the x-axis at the point (a, 0). Find the value of a.
- 7. If $log_48 + log_4q = 1$, find the value of q.
- 8. Solve the equation $log_2(x+1) 2log_2 = 3$.
- 9. Find x if $4log_x 6 2log_x 4 = 1$.

O4 I can solve for a and b equations of the following forms, given two pairs of corresponding values of x and y: $logy = blogx + loga, y = ax^b$ and, $logy = xlogb + loga, y = ab^x$

1. Each graph below is in the form $y = ab^x$.

In each case state the values of a and b.

2. Each graph below is in the form $y = ax^b$. In each case state the values of a and b.

- **3.** Given that $y = px^q$, and that x = 3 when y = 162 and that x = 5 when y = 1250, find *p* and *q*.
- 4. An investment (£A) grows according to the relationship $A = ab^t$ where t is the time after the investment is made in years. If after 3 years the investment is worth £1157.63 and after 10 years it is worth £1628.89, find the values of a and b.

O5 I can plot and extract information from straight line graphs with logarithmic axes (axis).

- 1. Given that $y = kx^n$, where k and n are constants, what would you plot in order to get a straight line graph?
- 2. Given that $y = Ae^{kx}$ where k and A are constants, what would you plot in order to get a straight line graph?

- **4.** Two variables x and y satisfy the equation $y = 3 \times 4^x$.
 - (a) Find the values of *a* if (a, 6) lies on the graph with equation $y = 3 \times 4^x$.
 - (b) If $(-\frac{1}{2}, b)$ also lies on the graph, find b.
 - (c) A graph is drawn of $log_{10}y$ against x. Show that its equations will be of the form $log_{10}y = Px + Q$ and state the gradient of this line.

O6 I can solve logarithmic and exponential equations in real life contexts.

1. Radium decays exponentially and its half-life is 1600 years.

If A_0 represents the amount of radium in a sample to start with and A(t) represents the amount remaining after t years, then $A(t) = A_0 e^{-kt}$.

- (a) Determine the value of k, correct to 4 significant figures.
- (b) Hence find what percentage, to the nearest whole number, of the original amount of radium will be remaining after 4000 years.
- **2.** The concentration of the pesticide, Xpesto, in soil can be modelled by the equation

$$P = P_0 e^{-kt}$$

Where

- *P*⁰ is the initial concentration;
- *P_t* is the concentration at time *t*;
- *t* is the time, in days, after the application of the pesticide.
- (a) Once in the soil, the half-life of pesticide is the time taken for its concentration to be reduced to one half of its initial value.

If the half-life of *Xpesto* is 25 day, find the value of k to 2 significant figures.

(b) Eighty days after the initial application, what is the percentage decrease in the concentration of *Xpesto*?

3. Before a forest fire was brought under control, the spread of the fire was described by a law of the form $A(t) = A_0 e^{-kt}$ where A_0 is the area covered by the fire when it was first detected and A is the area covered by the fire t hours later.

If it takes one and a half hours for the area of the forest fire to double, find the value of the constant $\ .$

Answers

Section A

R1

- (a) $2\sqrt{2}$ (b) $2\sqrt{3}$ (c) $5\sqrt{2}$ 1. (d) $3\sqrt{5}$ (e) $12\sqrt{2}$ (f) $10\sqrt{10}$ 2. (a) $\frac{\sqrt{2}}{2}$ (b) $10\sqrt{2}$ (c) $\frac{2\sqrt{2}}{5}$ **3.** (a) x^7 (b) y^4 (c) x^2 (d) $\frac{1}{y^2}$ (e) $8a^{12}$ (f) p^8 (g) xy^3 (h) ab^2 (i) 10 (j) $\frac{x^3}{2y^2}$ (k) $6p^{\frac{11}{2}}$ (l) $2r^{10}$ (m) a (n) 1 (o) $x^5 + x^2$ 4. (a) $\frac{1}{x} + \frac{3}{x^2}$ (b) $x + \frac{2}{x}$ (c) 3x + 2 (d) $\frac{1}{x} - \frac{1}{\sqrt{x}}$ (e) $2a^6 + 8x^3 - 3x - \frac{12}{x^2}$ (f) $\frac{1}{x^2} + \frac{2}{x} + 1$ (g) $x^{-\frac{2}{3}}$ (h) $\frac{1}{2}x^{-\frac{1}{3}}$ (i) $\frac{1}{5}x^{-\frac{3}{4}}$ (j) $\frac{3}{5}x^{-\frac{5}{2}}$ (k) $\frac{2}{7}x^{-\frac{2}{3}}$ (k) $6x^{-\frac{1}{3}}$ (m) $x + 3 + 5x^{-1}$ (n) $2x^{\frac{5}{2}} + x^{\frac{3}{2}} + x^{-\frac{1}{2}}$ (p) $x^{-\frac{1}{2}} + 5x^{-\frac{3}{2}}$ (q) $x^{-2} + \frac{x}{2}$ (r) $x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}$ (s) $x^{\frac{1}{2}} + 3 + 2x^{-1}$ (t) $\frac{1}{5}x^{\frac{2}{3}} + \frac{2}{5}x^{-\frac{1}{3}} - \frac{3}{5}x^{-\frac{4}{3}}$ (u) $\frac{3}{2} + \frac{5}{2}x^{-1} + \frac{1}{2}x^{-2}$ **R2** (a) m = 4, y = 4x - 9 (b) m = 2, y = 2x + 31. (c) $m = -\frac{1}{2}$, $y = -\frac{1}{2}x - \frac{5}{2}$ (d) undefined, x = -1**2.** (a) m = 3, y-intercept (0, -2) (b) m = 1, y-intercept (0, 4) (c) m = 4, y-intercept (0, 0) (d) m = -2, y-intercept (0, -1)
 - (e) m = 2, y-intercept (0, 3) (f) m = 1, y-intercept (0, -3)
- 3. y = 18 2x

4.	(a) $y = 5x - 13$	(b) $y = \frac{2}{3}x - \frac{13}{3}$	(c) $y = -2x - 9$
5.	y = 3x - 2	6. $y = \frac{1}{2}x + 5$	7. $y = -2x - 5$
8.	$y = \frac{5}{2}x - \frac{1}{2}$	9. $y = 2x + 9$	10. $y = -\frac{3}{5}x + \frac{12}{5}$

Section B Answers

1.	(a) log_435rs	(b) $log_5 12xy$	(c) $log_3 10ab$
2.	(a) $4log_a x$	(b) $6log_a p$	(c) $5log_a T$
3.	x = 6	4. $x = 22$	5. $x = 9$
6.	(a) $log_a 4$	(b) 2 (c) 3	
7.	<i>x</i> = 21 8.	x = 81	
9.	(a) $log_b 40$	(b) 3	(c) 2
10.	$q = \frac{1}{2}$		

Section C

01 1. (b) 2. (a) 02 1. (a) $log_x \frac{15}{7}$ (b) $log_a 2$ 2. (a), (b)Proof 3. $x = \frac{y^2}{z^3}$ 4. a = 16 5. $1 + log_e 8 - log_e 9$ 03 1. x = 0.877 2. (a) A = 0.0503 (b) k = -0.0347 (c) t = 4613. x = -8 and x = 2 4. x = -1 and $x = \frac{1}{2}$ 5. (a) Proof (b) $x = 3^8$ 6. $a = 3^{2.2} + 1$ 7. $q = \frac{1}{2}$ 8. x = 71 9. x = 81

04	
1.	(a) $a = 4, b = 3$ (b) $a = 5, b = 2$
2.	(a) $a = 3, b = 5$ (b) $a = 7, b = 3$ 3. $p = 2, q = 4$
4.	$a = 1000, b = 1 \cdot 05$
05	
1.	$log_a y$ against $log_a x$ 2. $log_a y$ against x
3.	$k = 32, \ m = \frac{1}{2}$
4.	(a) $a = \frac{1}{2}$ (b) $b = \frac{3}{2}$ (c) $m = \log_{10}4$ and $(0, \log_{10}3)$
5.	$A = e^3, \ k = \frac{1}{3}$
06	
1.	(a) $k = 0.0004332$ (b) 18% 2. (a) $k = 0.028$ (b) 10.6%
3.	k = -0.462