Higher Portfolio

Trigonometry 1

EF2. Trigonometry 1

Section A - Revision Section

This section will help you revise previous learning which is required in this topic.

R1 Trig Graphs and Equations from National 5

1. Sketch the graphs of
(a) $y=-2 \sin x^{\circ}, 0 \leq x \leq 360$.
(b) $y=3 \cos x^{\circ}-1,0 \leq x \leq 360$.
(c) $y=\tan x^{\circ}, 0 \leq x \leq 360$.
2. Part of the graph of $y=\cos (x-a)^{\circ}$ is shown.

Write down the value of a.
3. Solve the equations
(a) $5 \tan x^{\circ}-6=2$,
$0 \leq x<360$.
(b) $4 \cos x^{\circ}+3=0$,
$0 \leq x \leq 360$.
(c) $7 \sin x^{\circ}+1=-5$,
$0 \leq x \leq 360$.

Trigonometry 1

4. If $\sin x^{\circ}=\frac{4}{5}$ and $\cos x^{\circ}=\frac{3}{5}$, calculate the value of $\tan x^{\circ}$.
5. Simplify $\frac{\cos ^{3} x^{\circ}}{1-\sin ^{2} x^{\circ}}$.
6. Part of a graph of $y=4 \sin x^{\circ}-3$ is shown.

The graph cuts the x-axis at Q and R .
P is the maximum turning point.
(a) Write down the coordinates of P .
(b) Calculate the x-coordinates of Q and R.

7. Part of the graph of $y=a \sin b x^{\circ}$ is shown.

Write down the values of a and b.

Trigonometry 1

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test (Expressions and Functions 1.2)

1. A and B are acute angles such that $\sin A=\frac{7}{25}, \cos A=\frac{24}{25}, \sin B=\frac{12}{13}$ and $\cos B=\frac{5}{13}$.

Find the exact value of $\cos (A+B)$.
2. The diagram shows two right-angled triangles.

Find the exact value of $\sin (x+y)$.

3. The diagram shows two right-angled triangles.

Find the exact value of $\cos (P-Q)$.

4. Show that $\sin x \cos x \tan x \equiv 1-\cos ^{2} x$.
5. Show that $1-\cos 2 x \equiv \tan x \sin 2 x$.
6. Show that $\sin 4 B \equiv 4 \sin B \cos B\left(1-2 \sin ^{2} B\right)$.

Trigonometry 1

7. Express $4 \cos x^{\circ}+\sin x^{\circ}$ in the form $k \sin (x+a)^{\circ}$ where $k>0$ and $0 \leq a<360$.
8. Express $\sin x^{\circ}-3 \cos x^{\circ}$ in the form $k \sin (x-a)^{\circ}$ where $k>0$ and $0 \leq a<360$.
9. $f(x)=2 \cos x^{\circ}-3 \sin x^{\circ}$.

Express $f(x)$ in the form $k \cos (x+a)^{\circ}$ where $k>0$ and $0 \leq a<360$.
10. Express $f(t)=\cos 30 t^{\circ}+\sqrt{3} \sin 30 t^{\circ}$ in the form $k \cos (30 t-a)^{\circ}$ where $k>0$ and $0 \leq a<360$.

Trigonometry 1

Section C - Operational Skills Section

This section provides problems with the operational skills associated with Trigonometry 1.

01 I can convert radians to degrees and vice versa.

1. Convert the following angles from degrees to radians, giving you answer as an exact value.
(a) 30°
(b) 45°
(c) 60°
(d) 90°
(e) 180°
(f) 360°
(g) 150°
(h) 240°
(i) 315°
2. Convert the following angles from degrees to radians, giving you answer to 3 significant figures.
(a) 37°
(b) 142°
(c) 307°
3. Convert the following angles from radians to degrees.
(a) π radians
(b) 2π radians
(c) $\frac{\pi}{3}$ radians
(d) $\frac{\pi}{2}$ radians
(e) $\frac{3 \pi}{2}$ radians
(f) $\frac{2 \pi}{3}$ radians
(g) $\frac{5 \pi}{3}$ radians
(h) $\frac{\pi}{4}$ radians
(i) $\frac{7 \pi}{6}$ radians
4. Convert the following angles from radians to degrees, giving you answer to 3 significant figures.
(a) 1 radian
(b) $1 \cdot 4$ radians
(c) 3 radians

Trigonometry 1

02 I can use and apply exact values.

1. Write down the exact value of
(a) $\sin 30^{\circ}$
(b) $\sin 60^{\circ}$
(c) $\sin 45^{\circ}$
(d) $\sin 135^{\circ}$
(e) $\sin 270^{\circ}$
(f) $\sin 240^{\circ}$
2. Write down the exact value of
(a) $\cos 30^{\circ}$
(b) $\cos 60^{\circ}$
(c) $\cos 45^{\circ}$
(d) $\cos 120^{\circ}$
(e) $\cos 180^{\circ}$
(f) $\cos 210^{\circ}$
3. Write down the exact value of
(a) $\tan 30^{\circ}$
(b) $\tan 60^{\circ}$
(c) $\tan 45^{\circ}$
(d) $\tan 150^{\circ}$
(e) $\tan 90^{\circ}$
(f) $\tan 315^{\circ}$
4. Write down the exact value of
(a) $\sin \frac{\pi}{6}$
(b) $\cos \frac{\pi}{4}$
(c) $\tan \frac{\pi}{3}$
(d) $\cos 2 \pi$
(e) $\tan 2 \pi$
(f) $\sin \pi$
(g) $\tan \frac{5 \pi}{4}$
(h) $\sin \frac{11 \pi}{6}$
(i) $\cos \frac{7 \pi}{6}$

Trigonometry 1

03 I can sketch or identify a basic trig graph under the transformations $k f(x), f(x)+k, f(k x), f(x+k),-f(x)$ or a combination of these.

1. Write down the equation of each of the graphs

(a)

(c)

(e)

(b)

(d)

(f)

Trigonometry 1

2. Sketch each graph showing clearly the coordinates of the maximum and minimum values and where each graph cuts the axes.
(a) $y=\sin x^{\circ}+1$ for $0 \leq x \leq 360$
(b) $y=-5 \cos x$ for $0 \leq x \leq 2 \pi$
(c) $y=\tan (x-45)^{\circ}$ for $0 \leq x \leq 360$
3. Write down the equation of each of the graphs
(a)
(b)

(c)

Trigonometry 1

4. Sketch each graph showing clearly the coordinates of the maximum and minimum values and where each graph cuts the axes.
(a) $y=4 \cos 2 x^{\circ}$ for $0 \leq x \leq 360$
(b) $y=\sin \left(x-\frac{\pi}{6}\right)+2$ for $0 \leq x \leq 2 \pi$
(c) $y=\cos 2 x-1$ for $0 \leq x \leq 2 \pi$
5. Write down the equation of each of the graphs
(a)

(b)

(c)

Trigonometry 1

04 I can use the addition and double angle formulae.

1. Expand and use exact values to simplify
(a) $\sin (x-60)^{\circ}$
(b) $\cos \left(x-\frac{\pi}{4}\right)$
(c) $\sin (x+\pi)$
(d) $\cos \left(x+\frac{\pi}{3}\right)$
2. Use an appropriate substitution then expand to find the exact values of
(a) $\sin 15^{\circ}$
(b) $\cos 105^{\circ}$
3. Given that $\sin x^{\circ}=\frac{3}{5}$ and $\cos x^{\circ}=\frac{4}{5}$, find the exact values of:
(a) $\sin 2 x^{\circ}$
(b) $\cos 2 x^{\circ}$
(c) $\sin 3 x^{\circ}($ Hint $3 x=2 x+x)$
4. Given that $\sin x^{\circ}=\frac{1}{\sqrt{5}}$ and $\cos x^{\circ}=\frac{2}{\sqrt{5}}$, find the exact values of:
(a) $\sin 2 x^{\circ}$
(b) $\cos 2 x^{\circ}$
(c) $\cos 3 x^{\circ}$
5. Given $\tan 2 x=\frac{3}{4}, 0<x<\frac{\pi}{4}$, find the exact value of $\cos x$.

Trigonometry 1

05 I can convert $a \cos x+b \sin x$ to $k \cos (x \pm \alpha)$ or $k \sin (x \pm \alpha)$, where a is in any quadrant $k>0$.

1. A function g is defined as $g(x)=3 \cos x^{\circ}+\sin x^{\circ}$.

Express $g(x)$ in the form $k \sin (x+\alpha)^{\circ}$ where $k>0$ and $0 \leq \alpha<360$.
2. Express $3 \sin x-4 \cos x$ in the form $a \sin (x-b)$ where $a>0$ and $0 \leq b<2 \pi$.
3. Express $\sin x-\sqrt{3} \cos x$ in the form $k \cos (x+a)$ where $k>0$ and $0 \leq a<2 \pi$.
4. A function f is defined as $f(x)=2 \cos x^{\circ}-\sin x^{\circ}$.

Express $f(x)$ in the form $k \sin (x-a)^{\circ}$ where $k>0$ and $0 \leq a<360$.
5. A function f is defined as $f(x)=\sqrt{3} \cos 2 x^{\circ}+\sin 2 x^{\circ}$.

Express $f(x)$ in the form $k \cos (2 x-a)^{\circ}$ where $k>0$ and $0 \leq a<180$.
6. A function f is defined as $f(x)=\sqrt{5} \cos 3 x^{\circ}-2 \sin 3 x^{\circ}$.

Express $f(x)$ in the form $k \sin (3 x+\alpha)^{\circ}$ where $k>0$ and $0 \leq \alpha<360$.
7. A function f is defined as $f(x)=\sqrt{7} \cos 2 x^{\circ}-3 \sin 2 x^{\circ}$.

Express $f(x)$ in the form $k \cos (2 x-a)^{\circ}$ where $k>0$ and $0 \leq a<360$.

Trigonometry 1

06 I have experience of using wave functions to find the maximum and minimum values.

1. (a) Express $\sin x-\cos x$ in the form $k \sin (x-a)$ where $k>0$ and $0 \leq a<2 \pi$.
(b) Hence state the maximum and minimum values of $\sin x-\cos x$ and determine the values of x, in the interval $0 \leq x<2 \pi$, at which these maximum and minimum values occur.
2. (a) Express $12 \sin x+5 \cos x$ in the form $k \sin (x+a)$ where $k>0$ and $0 \leq a<2 \pi$.
(b) Hence state the maximum value of $4+12 \sin x+5 \cos x$ and determine the value of x, in the interval $0 \leq x<2 \pi$, at which the maximum occurs.
3. A function f is defined as $f(x)=4 \cos x^{\circ}+3 \sin x^{\circ}$.

Find the maximum and minimum values of $f(x)$ and the values of, in the range $0 \leq x<360$, at which the maximum and minimum values occur.
4. \quad A function f is defined as $f(x)=5 \cos x^{\circ}-2 \sin x^{\circ}$.
(a) Express $f(x)$ in the form $k \cos (x+a)^{\circ}$ where $k>0$ and $0 \leq a<360$.
(b) Part of the graph of $y=f(x)$ is shown in the diagram.

Find the coordinates of the minimum turning point A.

Trigonometry 1

07 I can apply Trig Formulae to Mathematical Problems (excluding where trig equations have to be solved but including exact values).

1. If $\cos 2 x=-\frac{31}{49}$ and $0<x<\frac{\pi}{2}$, find the exact values of $\cos x$ and $\sin x$.
2. In triangle $A B C$, show that:
(a) The exact value of $\sin 2 p=\frac{2 \sqrt{2}}{3}$
(b) The exact value of $\cos (p+q)=\frac{2 \sqrt{2}-1}{\sqrt{15}}$

3. For the shape shown, find the exact value of $\cos (A \hat{B} C)^{\circ}$

4. It is given that $\cos a=\frac{3}{5}$ and $\sin b=\frac{2}{3}$.
(a) Find the exact value of $\sin (a+b)$ and $\cos (a+b)$.
(b) Hence find the exact value of $\tan (a+b)$.

Trigonometry 1

5. On the coordinate diagram shown, P is the point $(8,6)$ and Q is the point $(5,-12)$.

Angle $\mathrm{POR}=a$ and angle $\mathrm{ROQ}=-b$.
(a) Find the exact value of $\sin (a-b)$.
(b) Find the exact value of $\cos 2 a$.

Trigonometry 1

Answers

Section A
1.(a)

(c)

2. $a=45$
3.(a) $x=58,238$
(b) $x=189,221$
(c) $x=239,301$
4. $\frac{4}{3}$
5. $\cos x^{\circ}$
6(a) $P(90,1)$
(b) $\quad Q(48 \cdot 6,0), R(131,0)$
7. $a=5, b=2$

Section B

1. $\frac{36}{325}$
2. $\frac{77}{85}$
3. $\frac{63}{65}$
4. Proof
5. Proof
6.
7. $\sqrt{17} \sin (x+76)^{\circ}$
8. $\sqrt{10} \sin (x-72)^{\circ}$
9. $\sqrt{13} \cos (x+56)^{\circ}$
10. $2 \cos (30 t-60)^{\circ}$

Trigonometry 1

01
1.
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$
(e) π
(f) 2π
(g) $\frac{5 \pi}{6}$
(h) $\frac{4 \pi}{3}$
(i) $\frac{7 \pi}{4}$
2.
(a) $0 \cdot 646$
(b) $2 \cdot 48$
(c) $5 \cdot 36$
3.
(a) 180
(b) 360
(c) 60
(d) 90
(e) 270
(f) 120
(g) 300
(h) 45
(i) 210
4.
(a) $57 \cdot 3$
(b) $80 \cdot 2$
(c) 172

02

1.

(a) $\begin{array}{ll}\frac{1}{2} & \text { (b) } \frac{\sqrt{3}}{2}\end{array}$
(c) $\frac{1}{\sqrt{2}}$
(d) $\frac{1}{\sqrt{2}}$
(e) -1
(f) $-\frac{\sqrt{3}}{2}$
2.
(a) $\frac{\sqrt{3}}{2}$
(b) $\frac{1}{2}$
(c) $\frac{1}{\sqrt{2}}$
(d) $-\frac{1}{2}$
(e) -1
(f) $-\frac{\sqrt{3}}{2}$
3.
(a) $\frac{1}{\sqrt{3}}$
(b) $\sqrt{3}$
(c) 1
(d) $-\frac{1}{\sqrt{3}}$
(e) Undefined
(f) -1
4.
(a) $\frac{1}{2}$
(b) $\frac{1}{\sqrt{2}}$
(c) $\sqrt{3}$
(g) 1
(h) $-\frac{1}{2}$
(i) $-\frac{\sqrt{3}}{2}$
(d) 1
(e) 0
(f) 0

03

1.

(a) $y=2 \sin x^{\circ}$
(b) $y=-\cos x^{\circ}$
(c) $y=\tan (x-90)^{\circ}$
(d) $y=-2 \sin x^{\circ}$
(e) $y=\cos x^{\circ}-3$
(f) $y=\sin x^{\circ}+1$

2. (a)

(b)

Trigonometry 1

(c)

3.
(a) $y=3 \cos x^{\circ}-1$
(b) $y=2 \sin (x+45)^{\circ}$ or $y=2 \cos (x-45)^{\circ}$
(c) $y=-\tan (x+30)^{\circ}$
(d) $y=\sin (x-30)^{\circ}+2$
4. (a)

(b)

(c)

1.
(a) $\frac{1}{2} \sin x^{\circ}-\frac{\sqrt{3}}{2} \cos x^{\circ}$
(b) $\frac{1}{\sqrt{2}} \cos x+\frac{1}{\sqrt{2}} \sin x$
(d) $-\sin x$
(c) $\frac{1}{2} \cos x-\frac{\sqrt{3}}{2} \sin x$
2.
(a) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
(b) $\frac{1-\sqrt{3}}{2 \sqrt{2}}$

Trigonometry 1

3.

(a) $\frac{24}{25}$
(b) $\frac{7}{25}$
(c) $\frac{117}{125}$
4. (a) $\frac{4}{5}$
(b) $\frac{3}{5}$
(c) $\frac{2}{5 \sqrt{5}}$
5. $\frac{3}{\sqrt{10}}$

05

1. $\sqrt{10} \sin (x+71.6)^{\circ}$
2. $5 \sin (x-0 \cdot 93)$
3. $2 \cos \left(x+\frac{7 \pi}{6}\right)$
4. $\sqrt{5} \sin (x-243 \cdot 4)^{\circ}$
5. $2 \cos (2 x-30)^{\circ}$
6. $3 \sin (3 x+138 \cdot 2)^{\circ}$
7. $4 \cos (2 x-311 \cdot 4)^{\circ}$

06

1. (a) $\sqrt{2} \sin \left(x-\frac{\pi}{4}\right) \quad$ (b) $\min -\sqrt{2}$ at $x=\frac{7 \pi}{4}, \max \sqrt{2}$ at $x=\frac{3 \pi}{4}$
2. (a) $13 \sin (x+0.395)$
(b) $\quad \max 17$ at $x=1.18$
3. $\quad \min -5$ at $x=216 \cdot 9, \max 5$ at $x=36 \cdot 9$
4. (a) $\sqrt{29} \cos (x+21.8)^{\circ}$
(b) $(158 \cdot 2,-\sqrt{29})$
