Higher Portfolio

Functions and Graphs

EF3. Functions and Graphs

Section A - Revision Section

This section will help you revise previous learning which is required in this topic.

R1 I have investigated x and y - intercepts for a range of graphs of functions.

Find out where the following graphs cross the x-axis and the y-axis:

(a)	y = 4x + 8	(b)	$y = \frac{1}{4}x - 3$	(c)	3x + 5y - 15 = 0
(d)	$y = x^2 - 3x$	(e)	$y = x^2 - 16$	(f)	$y = x^2 + 6x - 27$
(g)	$y = 2x^2 - 18$	(h)	$y = 2x^2 + 5x - 3$		

R2 I can complete the square for a quadratic with coefficient of $x^2 = \pm 1$.

(a)	$x^2 + 2x + 5$	(b)	$t^2 - 10t + 2$	(c)	$v^2 - 2v + 7$
(d)	$7 - 2x - x^2$	(e)	$1 - 4t - t^2$	(f)	$1 + 2x - x^2$

R3 I have had experience of graphing linear and quadratic functions.

1. Sketch the graphs of the following straight lines:

(a) y = 2x + 3(b) y = -3x - 2(c) $y = \frac{1}{2}x + 1$ (d) 2x + y - 4 = 0

2. For the following Quadratic Functions:

- Calculate where the graph crosses the x-axis and the y-axis
- Find the Turning Point and state it's nature
- Sketch the graph

(a)
$$y = x^2 - 4x + 3$$
 (b) $y = x^2 - 4x - 12$

3. For the following Quadratic Functions:

- Express in the form $y = a(x + b)^2 + c$
- Find the Turning Point, and state it's nature, and find where the graph cuts the *y*-axis.
- (a) $y = x^2 + 6x 1$ (b) $y = x^2 4x + 5$
- (c) $y = x^2 + 3x + 4$ (d) $y = x^2 5x 5$

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test (Expressions and Functions 1.3)

1. The diagram shows the graph of y = f(x) with a minimum turning point at (-2, -2) and a maximum turning point at (2, 3).

Sketch the graph of y = f(x - 3) + 2.

2. The diagram shows the graph of y = f(x) with a maximum turning point at (-4, 8) and a minimum turning point at (0, 0).

Sketch the graph of y = f(x + 2) - 3.

3. The diagram shows the graph of $y = log_b(x - a)$

Determine the values of a and b.

4. The diagram shows the graph of $y = log_b(x + a)$

Determine the values of a and b.

- 5. Sketch the graph of $y = acos(x \frac{\pi}{3})$ for $0 \le x \le 2\pi$ and a > 0, clearly showing the maximum and minimum values and where it cuts the *x*-axis.
- 6. Sketch the graph of $y = asin(x \frac{\pi}{6})$ for $0 \le x \le 2\pi$ and a > 0, clearly showing the maximum and minimum values and where it cuts the *x*-axis.
- 7. The diagram below shows the graph of $y = a\cos(bx) + c$.

Write down the values of a, b and c.

8. The diagram below shows the graph of y = asin(bx) + c.

Write down the values of a, b and c.

9. The functions *f* and *g*, defined on suitable domains, are given by f(x) = 2x + 3 and $g(x) = \frac{x^2 + 25}{x^2 - 25}$ where $x \neq \pm 5$.

A third function h(x) is defined as h(x) = g(f(x)).

- (a) Find an expression for h(x).
- (b) For which real values of x is the function h(x) undefined?

10. A function is given by $f(x) = 3x^2 + 1$. Find the inverse function $f^{-1}(x)$.

Section C - Operational Skills Section

This section provides problems with the operational skills associated with Functions and Graphs.

O1 I can understand and use basic set notation.

- 1. Using the { } brackets notation, list the following sets:
 - (a) The set of the first ten prime numbers.
 - (b) The set of odd numbers greater than 20 but less than 30.
- 2. Describe the following sets in words:
 - (a) { Cone, Pyramid }
 - (b) { 1, 4, 9, 16, 25 }
- 3. Connect these numbers with the appropriate set, using \in :

Numbers: -3, 0, $-\frac{2}{5}$, 7 Sets: N, W, Z, Q

- 4. State which of the following are true and which are false:
 - (a) $2 \in \{ \text{ prime numbers } \}$
 - (b) { 0 } is the empty set
 - (c) $\{k,l,m,n\} = \{m,l,k,n\}$
 - (d) If A = { whole numbers greater than 50 }, then 46 $\not\in$ A

- 5. Using set notation, rewrite the following:
 - (a) 3 is a member of the set W.
 - (b) The empty set.
 - (c) x does not belong to the set A.
 - (d) S is a subset of the set T.
 - (e) The set P is equal to the set Q.
- 6. S = { 1,2,3,4,5,6,7,8,9,10 }. List the following subsets of S:
 - (a) The set of prime numbers in S.
 - (b) The set of elements in S which are factors of 70.
- 7. Find a set equal to each of the following:
 - (a) $\{1,2,3\} \cap \{2,3,4,5\}$
 - **(b)** $\{1,2,3\} \cap \{3,1,2\}$
 - (c) $\emptyset \cap \{2,3,4,5\}$
- 8. $E = \{1,2,3,4,5,6,8,10\} A = \{1,2,3,4\} B = \{3,4,5\} and C = \{2,4,6,8,10\}$
 - (a) Find $A \cap B$, $B \cap C$ and $A \cap C$.
 - (b) The set of elements common to A,B and C is denoted by A \cap B \cap C. Find A \cap B \cap C.
- **9.** Given that A = { 0,1,2 }, which of the following are true?

(a)	2 ∈ A	(b) 1 ⊂ A	(c)	{1} ⊂ A
(d)	0 ∈ Ø	(e) A ⊂ A	(f)	1∉A

10. $P = \{ 1, 2, 3, 4, 5, 6, 7 \} Q = \{ 5, 6, 7, 8, 9, 10 \}$ are subsets of $E = \{ 1, 2, 3, ..., 12 \}$.List the members of the following sets:(a) $P \cap Q$ (b) $P \cup Q$ (c) P'

(d)	Q'	(e)	(P ∩ Q)'	(f)	(P ∪ Q)'
(g)	P ∩ Q'	(h)	P' ∩ Q	(i)	P∩Ø

O2 I have investigated domains and ranges.

1. State a suitable domain for the following functions:

(a)	$f(x) = \frac{x^2}{x-1}$	(b)	$f(x)=\frac{4x-2}{2x-3}$	(c)	$f(x) = \frac{2x + 7}{x^2 - 16}$
(d)	$f(x) = \frac{x^2 - 5x + 4}{x^2 + 8x + 12}$	(e)	$f(x) = \sqrt{10 - x}$	(f)	$f(x) = \sqrt{x^2 + 3x}$

2. State the range of each function given its domain:

- (a) f(x) = 3x 4; $x \in \{2, 3, 4, 5\}$
- **(b)** $f(x) = x^2 3x + 4$; $x \in \{-2, -1, 0, 1, 2\}$

O3 I can determine a composite function.

- 1. Given f(x) = 2x 3, $g(x) = x^2$ and $h(x) = x^2 + 4$, find the following functions:
 - (a) f(g(x)) (b) g(f(x)) (c) h(f(x))
 - (d) f(f(x)) (e) g(h(x)) (f) h(h(x))

- 2. Given f(x) = x 2, $g(x) = \frac{2}{x^2}$ and $h(x) = \frac{4}{x+1}$, find the following functions:
 - (a) h(f(x)) (b) g(f(x)) (c) f(h(x))
 - (d) f(g(x)) (e) g(h(x)) (f) h(h(x))
- **3.** Given f(x) = x + 2, $g(x) = e^x$ and $h(x) = \tan x$, find the following functions:

(a) g(f(x)) (b) g(g(x)) (c) h(f(x))

4. Given $f(x) = 3x^2 + 2x - 1$, $g(x) = \sin x$ and $h(x) = \log_4 x$, find the following functions:

(a) f(g(x)) (b) h(f(x)) (c) g(g(x))

- 5. Two functions f and g, are defined by f(x) = 2x + 3 and g(x) = 2x 3, where x is a real number.
 - (a) Find expressions for f(g(x)) and g(f(x)).
 - (b) Determine the least possible value of the product $f(g(x)) \times g(f(x))$.
- 6. Functions f(x) = 3x 1 and $g(x) = x^2 + 7$, are defined on a set of real numbers.
 - (a) Find h(x) where h(x) = g(f(x)).
 - (b) (i) Write down the coordinates of the minimum turning point of y = h(x)
 - (ii) Hence state the range of the function h.

- 7. Functions $f(x) = \frac{1}{x-4}$ and g(x) = 2x + 3 are defined on suitable domains.
 - (a) Find an expression for h(x) where h(x) = f(g(x)).
 - (b) Write down any restriction on the domain of *h*.
- 8. Functions $f(x) = \frac{1}{x+2}$ and g(x) = 3x 1 are defined on suitable domains.
 - (a) Find an expression for h(x) where h(x) = f(g(x)).
 - (b) Write down any restriction on the domain of *h*.

O4 I understand that f(g(x)) = x implies that g(x) is the inverse of f(x).

1. If
$$f(x) = 3x - 2$$
 and $g(x) = \frac{x+2}{3}$

- (a) Find f(g(x)) and g(f(x)).
- (b) State a relationship between f(x) and g(x).

2. If f(x) = 2x + 5 and $g(x) = \frac{x-5}{2}$

- (a) Find f(g(x)) and g(f(x)).
- (b) State a relationship between f(x) and g(x).

05 I can determine the inverse of a linear function.

- 1. Given g(x) = 5x + 2, find an expression for $g^{-1}(x)$.
- **2.** Given h(x) = 2x 6, find an expression for $h^{-1}(x)$.
- **3.** Given $g(x) = \frac{1}{4}x 3$, find an expression for $g^{-1}(x)$.
- 4. Given f(x) = 2 4x, find an expression for $f^{-1}(x)$.
- 5. Given $g(x) = \frac{2x-4}{5}$, find an expression $g^{-1}(x)$.
- 6. Given g(x) = 6 2x, write down an expression for $g(g^{-1}(x))$.

O6 I can complete the square for any quadratic and understand the connection to its graph.

- 1. (a) Show that the function $f(x) = 3x^2 + 30x + 73$ can be written in the form $f(x) = a(x+b)^2 + c$, where a, b and c are constants.
 - (b) Hence or otherwise find the coordinates of the turning point of function f(x).
- 2. (a) Show the function $f(x) = 9 8x x^2$ can be written in the form $f(x) = p(x+q)^2 + r$ where p, q and r are constants.
 - (b) Hence or otherwise find the maximum value of f(x).
- 3. The cost, c pence of running a car for 20 miles at an average speed of x mph is given by $c = \frac{1}{4}x^2 - 25x + 875$
 - (a) Express c in the form $p(x-q)^2 + r$
 - (b) Find the most economical average speed and hence the cost for 20 miles at this speed

- 4. The height h metres, of a toy rocket is given by $h = 60 + 10t t^2$ where t seconds is the time of flight
 - (a) Express h in the form $p(t+q)^2 + r$
 - (b) Find the maximum height of the rocket and the time taken to reach it
- 5. (a) Show that the function $f(x) = 4x^2 + 16x 5$ can be written in the form $f(x) = a(x+b)^2 + c$, where a, b and c are constants.
 - (b) Hence or otherwise, find the coordinates of the turning point of the function *f*.
- 6. (a) Express $f(x) = 10 6x 3x^2$ in the form $f(x) = a(x+b)^2 + c$ where a, b and c are constants.
 - (b) Find the nature and the coordinates of the turning point of the function.

O7 I can identify and sketch a function after a transformation of the form kf(x), f(x) + k, f(kx), f(x + k), -f(x), f(-x), or a combination of these.

1. The diagram shows the graph of a function f. f has a minimum turning point at (0, -3) and a point of inflexion at (-4, 2). (a) Sketch the graph y = f(-x). (b) On the same diagram, sketch the graph y = 2f(-x). -4 -3 0 -3

- 2. The diagram shows the graph of y = g(x).
 - (a) Sketch the graph of y = -g(x).
 - (b) On the same diagram, sketch the graph y=3-g(x).

3. The diagram shows the graph of a function y = f(x).

Copy the diagram and on it sketch the graphs of:

(a) y = f(x-4).

(b)
$$y = 2 + f(x-4)$$
.

- 4. The diagram shows a sketch of the function y = f(x).
 - (a) Copy the diagram and on it sketch the graph of y = f(2x).
 - (b) On a separate diagram sketch the graph of y = 1 f(2x).

O8 I can sketch logarithmic and exponential functions and determine a suitable domain or range for a given function/composite function.

1. $y = \log_5(x)$ (5, 1) (1, 0) $y = \log_5(x)$

The diagram shows a sketch of part of the graph of $y = \log_5 x$.

- (a) Make a copy of the graph of y = log₅ x.
 On your copy, sketch the graph of y = log₅ x+1.
 Find the coordinates of the point where it crosses the x-axis.
- (b) Make a second copy of the graph of $y = \log_5 x$. On your copy, sketch the graph of $y = \log_5 \frac{1}{x}$.
- 2. The functions f and g, defined on suitable domains, are given by $f(x) = \frac{1}{x^2-4}$ and g(x) = 2x + 1.
 - (a) Find an expression for h(x) where h(x) = g(f(x)). Give your answer as a single fraction.
 - (b) State a suitable domain for *h*.

Part of the graph of $y = 5\log_{10}(2x+10)$ is shown in the diagram (not to scale).

This graph crosses the x-axis at the point A and the straight line y = 10 at the point B.

Find algebraically the x-coordinates of A and B.

- 6. (a) Given $y = a^x$, sketch the graph of $y = a^x + 1$, a > 2.
 - (b) On the same diagram, sketch the graph of $y = a^{x+1}, a > 2$

Prove that the graphs intersect at a point where the *x*-coordinate is

$$\log_a\left(\frac{1}{a-1}\right)$$

a)

- 7. Functions f(x) = 3x-1 and $g(x) = x^2 + 7$ are defined on the set of real numbers.
 - (a) Find h(x) where h(x) = g(f(x)).
 - (b) (i) Write down the coordinates of the minimum turning point y = h(x).
 - (ii) Hence state the range of the function *h*.
- 8. Sketch the following pairs of graphs on the same set of axes:
 - (a) $y = a^x$ and $y = 3(a^x)$
 - (b) $y = 3^x$ and $y = 3^{(x+1)}$
 - (c) $y = \log_2 x$ and $y = \log_2 4(x 1)$
 - (d) $y = \log_4 x$ and $y = \log_4 x^3$

Section D - Cross Topic Exam Style Questions

Functions and Logs

- 1. Functions *f*, *g* and h are defined on suitable domains by
 - $f(x) = x^2 x + 10$ g(x) = 5 x and $h(x) = \log_2 x$
 - (a) Find expressions for h(f(x)) and h(g(x)).
 - (b) Hence solve h(f(x)) h(g(x)) = 3.

Functions and Trig

2. Functions *a* and *b* are defined on suitable domains by

a(x) = x + 30 and $b(x) = \cos x^{\circ}$.

Show that $b(a(x)) = \frac{1}{2}(\sqrt{3}\cos x^\circ - \sin x^\circ).$

Section A

(b) (-2,0), (6,0), (0,-12); min at (2,-6)

3. (a)
$$y = (x + 3)^2 - 10$$
; min at $(-3, -10)$; $y - intercept (0, -1)$
(a) $y = (x - 2)^2 + 1$; min at $(2, 1)$; $y - intercept (0, 5)$
(a) $y = \left(x + \frac{3}{2}\right)^2 + \frac{7}{4}$; min at $\left(-\frac{3}{2}, \frac{7}{4}\right)$; $y - intercept (0, 4)$
(a) $y = \left(x + \frac{5}{2}\right)^2 - \frac{45}{4}$; min at $\left(-\frac{5}{2}, -\frac{45}{4}\right)$; $y - intercept (0, -5)$

Section B - Assessment Standard Section

7. $a = 4 \ b = 3 \ c = -1$

8.	<i>a</i> =	3 b = 4	<i>c</i> = 2							
9.	(a)	$h(x) = \frac{1}{2}$	$\frac{(2x+3)^2}{(2x+3)^2}$	+25 -25	(b)	h(x) undef	ined	for $x = -4$	and x :	= 1.
10.	f ⁻¹ ($(x) = \sqrt{\frac{x}{x}}$	$\frac{\alpha-1}{3}$							
Sectior	n C									
01										
1.	(a)	{2, 3, 4	, 5, 7, 1	1, 17, 19, 2	3, 29}	(b)	{21,	, 23, 25, 27,	29}	
2.	(a)	A set o	contai	ning two 3	D shaj	pes				
	(b)	A set o	contai	ning the fi	rst 5 s	quare num	nbers			
3.	7 ∈ .	N,W,Z,	Q;	$-3 \in \mathbb{Z}, \mathbb{Q}$	•	$0 \in V$	W,Z,(Q;	$-\frac{2}{5} \in 0$	Ş
4.	(a) 1	Г	(b)	F	(c)	Т	(d)	т		
5.	(a)	$3 \in W$	(b)	Ø	(c)	$x \notin A$	(d)	$S \subset T$	(e) <i>H</i>	P = Q
6.	(a) {	2, 3, 5, 7	}		(b)	{1, 2, 5, 7, 1	10,14	,35,70}		
7.	(a)	{2,3}	(b)	{1, 2, 3}	(c)	Ø				
8.	(a)	{3,4},	{4}, {2	2,4}	(b)	{4}				
9.	(a)	Т	(b)	F	(c)	Т	(d)	F	(e) 1	-
	(f)	F								
10.	(a)	{5, 6, 7	} (b)	{1, 2, 3, 4, 5	5, 6, 7,	8, 9, 10}	(c)	{ 8, 9, 10, 1	1, 12}	
	(d)	{1, 2, 3,	, 4, 11,	12}	(e)	{1, 2, 3, 4, 8	3, 9, 10), 11, 12}		
	(f)	{11, 12	}		(g)	{1, 2, 3, 4}				
	(h)	{ 8, 9, 1	.0}		(i)	Ø				
02										
1.	(a)	$\{x: x \in$	<i>R</i> , <i>x</i> ≠	= 1}	(b)	$\Big\{x\colon x\in R, z$	$x \neq \frac{3}{2}$	}		
	(c)	$\{x:x\in$	<i>R</i> , <i>x</i> ≠	±4}	(d)	${x:x \in R, z}$	$x \neq -$	$2, x \neq -6\}$		
	(e)	$\{x:x\in$	$R, x \ge$	<u>e</u> 10}	(f)	${x:x \in R, z}$	$x \leq -$	$3, x \ge 0$		

03					
1.	(a)	$f\bigl(g(x)\bigr)=2x^2-3$		(b)	$g(f(x)) = (2x-3)^2$
	(c)	$h(f(x)) = (2x - 3)^2 + 4$	4	(d)	f(g(x)) = 4x - 9
	(e)	$g(h(x)) = (x^2 + 4)^2$		(f)	$h(h(x)) = (x^2 + 4)^2 + 4$
2.	(a)	$h(f(x)) = \frac{4}{x-1}$		(b)	$g(f(x)) = \frac{2}{(x-2)^2}$
	(c)	$f(h(x)) = \frac{4}{x+1} - 2$		(d)	$f(g(x)) = \frac{2}{x^2} - 2$
	(e)	$g(h(x)) = \frac{(x+1)^2}{8}$		(f)	$h(h(x)) == \frac{4x+4}{x+5}$
3.	(a)	$g\bigl(f(x)\bigr)=e^{(x+2)}$		(b)	$g(g(x)) = e^{e^x}$
	(c)	$h(f(x)) = \tan(x+2)$			
4.	(a)	$f(g(x)) = 3\sin^2 x + 2\sin^2 x$	$\ln x - 1$	1 (b)	$h(f(x)) = \log_4(3x^2 + 2x - 1)$
	(c)	$g(g(x)) = \sin(\sin x)$			
5.	(a)	f(g(x)) = 4x - 3, g(f(x))	(x)) =	4 <i>x</i> + 3	(b) -9
6.	(a)	$h(x) = 9x^2 - 6x + 8$	(b)i	$\left(\frac{1}{3}, 8\right)$	(b)ii $\{x: x \in R, x \ge 8\}$
7.	(a)	$h(x) = \frac{1}{2x-4}$	(b)	<i>x</i> ≠ 2	
8.	(a)	$h(x) = \frac{1}{3x+1}$	(b)	$x \neq -\frac{1}{3}$	
04					
1.	(a)	f(g(x)) = g(f(x)) = x			
	(b) <i>f</i>	f(x) and $g(x)$ are inverse	e funct	tions	
2.	(a)	f(g(x)) = g(f(x)) = x			
	(b) <i>f</i>	f(x) and $g(x)$ are inverse	e funct	tions	
05					

1.
$$g^{-1}(x) = \frac{x-2}{5}$$

2. $h^{-1}(x) = \frac{x+6}{2}$
3. $g^{-1}(x) = 4(x+3)$
4. $f^{-1}(x) = \frac{2-x}{4}$
5. $g^{-1}(x) = \frac{5x+4}{2}$

- 6. (a) (i) Graph translated to pass through (0, 2).
 - (ii) Graph transformed by a factor of a in the y-direction passing through (0, a).
 - (b) Proof

Cross Topic Questions

1. (a)
$$h(f(x)) = \log_2(x^2 - x + 10)$$
 and $h(g(x)) = \log_2(5 - x)$
(b) $x = -10, 3$

2. Proof.