Higher Portfolio

Functions and Graphs

EF3. Functions and Graphs

Section A - Revision Section

This section will help you revise previous learning which is required in this topic.

R1 I have investigated x and y-intercepts for a range of graphs of functions.

Find out where the following graphs cross the x-axis and the y-axis:
(a) $y=4 x+8$
(b) $y=\frac{1}{4} x-3$
(c) $3 x+5 y-15=0$
(d) $y=x^{2}-3 x$
(e) $y=x^{2}-16$
(f) $y=x^{2}+6 x-27$
(g) $y=2 x^{2}-18$
(h) $y=2 x^{2}+5 x-3$

R2 I can complete the square for a quadratic with coefficient of $\boldsymbol{x}^{2}= \pm 1$.
(a) $x^{2}+2 x+5$
(b) $t^{2}-10 t+2$
(c) $v^{2}-2 v+7$
(d) $7-2 x-x^{2}$
(e) $1-4 t-t^{2}$
(f) $1+2 x-x^{2}$

R3 I have had experience of graphing linear and quadratic functions.

1. Sketch the graphs of the following straight lines:
(a) $y=2 x+3$
(b) $y=-3 x-2$
(c) $y=\frac{1}{2} x+1$
(d) $2 x+y-4=0$
2. For the following Quadratic Functions:

- Calculate where the graph crosses the x-axis and the y-axis
- Find the Turning Point and state it's nature
- Sketch the graph
(a) $y=x^{2}-4 x+3$
(b) $y=x^{2}-4 x-12$

Functions and graphs

3. For the following Quadratic Functions:

- Express in the form $y=a(x+b)^{2}+c$
- Find the Turning Point, and state it's nature, and find where the graph cuts the y-axis.
(a) $y=x^{2}+6 x-1$
(b) $y=x^{2}-4 x+5$
(c) $y=x^{2}+3 x+4$
(d) $y=x^{2}-5 x-5$

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test (Expressions and Functions 1.3)

1. The diagram shows the graph of $y=f(x)$ with a minimum turning point at $(-2,-2)$ and a maximum turning point at $(2,3)$.

Sketch the graph of $y=f(x-3)+2$.

Functions and graphs

2. The diagram shows the graph of $y=f(x)$ with a maximum turning point at $(-4,8)$ and a minimum turning point at $(0,0)$.

Sketch the graph of $y=f(x+2)-3$.
3. The diagram shows the graph of $y=\log _{b}(x-a)$

Determine the values of a and b.

Functions and graphs

4. The diagram shows the graph of $y=\log _{b}(x+a)$

Determine the values of a and b.
5. Sketch the graph of $y=\operatorname{acos}\left(x-\frac{\pi}{3}\right)$ for $0 \leq x \leq 2 \pi$ and $a>0$, clearly showing the maximum and minimum values and where it cuts the x-axis.
6. Sketch the graph of $y=\operatorname{asin}\left(x-\frac{\pi}{6}\right)$ for $0 \leq x \leq 2 \pi$ and $a>0$, clearly showing the maximum and minimum values and where it cuts the x-axis.
7. The diagram below shows the graph of $y=\operatorname{acos}(b x)+c$.

Write down the values of a, b and c.

Functions and graphs

8. The diagram below shows the graph of $y=\operatorname{asin}(b x)+c$.

Write down the values of a, b and c.
9. The functions f and g, defined on suitable domains, are given by $f(x)=2 x+3$ and $g(x)=\frac{x^{2}+25}{x^{2}-25}$ where $x \neq \pm 5$.

A third function $h(x)$ is defined as $h(x)=g(f(x))$.
(a) Find an expression for $h(x)$.
(b) For which real values of x is the function $h(x)$ undefined?
10. A function is given by $f(x)=3 x^{2}+1$. Find the inverse function $f^{-1}(x)$.

Functions and graphs

Section C - Operational Skills Section

This section provides problems with the operational skills associated with Functions and Graphs.

01 I can understand and use basic set notation.

1. Using the $\}$ brackets notation, list the following sets:
(a) The set of the first ten prime numbers.
(b) The set of odd numbers greater than 20 but less than 30.
2. Describe the following sets in words:
(a) \{Cone, Pyramid \}
(b) $\{1,4,9,16,25\}$
3. Connect these numbers with the appropriate set, using \in :

Numbers: $-3,0,-\frac{2}{5}, 7$
Sets: $\quad N, W, Z, Q$
4. State which of the following are true and which are false:
(a) $2 \in\{$ prime numbers $\}$
(b) $\{0\}$ is the empty set
(c) $\{k, l, m, n\}=\{m, l, k, n\}$
(d) If $\mathrm{A}=\{$ whole numbers greater than 50$\}$, then $46 \notin \mathrm{~A}$

Functions and graphs

5. Using set notation, rewrite the following:
(a) 3 is a member of the set W .
(b) The empty set.
(c) x does not belong to the set A.
(d) S is a subset of the set T .
(e) The set P is equal to the set Q .
6. $S=\{1,2,3,4,5,6,7,8,9,10\}$. List the following subsets of S :
(a) The set of prime numbers in S .
(b) The set of elements in S which are factors of 70 .
7. Find a set equal to each of the following:
(a) $\{1,2,3\} \cap\{2,3,4,5\}$
(b) $\{1,2,3\} \cap\{3,1,2\}$
(c) $\varnothing \cap\{2,3,4,5\}$
8. $E=\{1,2,3,4,5,6,8,10\} \quad A=\{1,2,3,4\} \quad B=\{3,4,5\}$ and $C=\{2,4,6,8,10\}$
(a) Find $A \cap B, B \cap C$ and $A \cap C$.
(b) The set of elements common to A, B and C is denoted by $A \cap B \cap C$. Find $A \cap B \cap C$.
9. Given that $A=\{0,1,2\}$, which of the following are true?
(a) $2 \in A$
(b) $1 \subset A$
(c) $\{1\} \subset A$
(d) $0 \in \varnothing$
(e) $\mathrm{A} \subset \mathrm{A}$
(f) $1 \notin \mathrm{~A}$

Functions and graphs

10. $P=\{1,2,3,4,5,6,7\} \quad Q=\{5,6,7,8,9,10\}$ are subsets of $E=\{1,2,3, \ldots, 12\}$. List the members of the following sets:
(a) $P \cap Q$
(b) $P \cup Q$
(c) P^{\prime}
(d) Q^{\prime}
(e) $(P \cap Q)^{\prime}$
(f) $(P \cup Q)$ '
(g) $P \cap Q^{\prime}$
(h) $P^{\prime} \cap Q$
(i) $P \cap \emptyset$

02 I have investigated domains and ranges.

1. State a suitable domain for the following functions:
(a) $f(x)=\frac{x^{2}}{x-1}$
(b) $f(x)=\frac{4 x-2}{2 x-3}$
(c) $f(x)=\frac{2 x+7}{x^{2}-16}$
(d) $f(x)=\frac{x^{2}-5 x+4}{x^{2}+8 x+12}$
(e) $f(x)=\sqrt{10-x}$
(f) $f(x)=\sqrt{x^{2}+3 x}$
2. State the range of each function given its domain:
(a) $\quad f(x)=3 x-4$; $x \in\{2,3,4,5\}$
(b) $f(x)=x^{2}-3 x+4$;
$x \in\{-2,-1,0,1,2\}$

03 I can determine a composite function.

1. Given $f(x)=2 x-3, g(x)=x^{2}$ and $h(x)=x^{2}+4$, find the following functions:
(a) $f(g(x))$
(b) $g(f(x))$
(c) $\quad h(f(x))$
(d) $f(f(x))$
(e) $g(h(x))$
(f) $\quad h(h(x))$

Functions and graphs

2. Given $f(x)=x-2, g(x)=\frac{2}{x^{2}}$ and $h(x)=\frac{4}{x+1}$, find the following functions:
(a) $h(f(x))$
(b) $g(f(x))$
(c) $\quad f(h(x))$
(d) $f(g(x))$
(e) $g(h(x))$
(f) $\quad h(h(x))$
3. Given $f(x)=x+2, g(x)=e^{x}$ and $h(x)=\tan x$, find the following functions:
(a) $g(f(x))$
(b) $g(g(x))$
(c) $\quad h(f(x))$
4. Given $f(x)=3 x^{2}+2 x-1, g(x)=\sin x$ and $h(x)=\log _{4} x$, find the following functions:
(a) $f(g(x))$
(b) $h(f(x))$
(c) $g(g(x))$
5. Two functions f and g , are defined by $f(x)=2 x+3$ and $g(x)=2 x-3$, where x is a real number.
(a) Find expressions for $f(g(x))$ and $g(f(x))$.
(b) Determine the least possible value of the product $f(g(x)) \times g(f(x))$.
6. Functions $f(x)=3 x-1$ and $g(x)=x^{2}+7$, are defined on a set of real numbers.
(a) Find $h(x)$ where $h(x)=g(f(x))$.
(b) (i) Write down the coordinates of the minimum turning point of

$$
y=h(x)
$$

(ii) Hence state the range of the function h.

Functions and graphs

7. Functions $f(x)=\frac{1}{x-4}$ and $g(x)=2 x+3$ are defined on suitable domains.
(a) Find an expression for $h(x)$ where $h(x)=f(g(x))$.
(b) Write down any restriction on the domain of h.
8. Functions $f(x)=\frac{1}{x+2}$ and $g(x)=3 x-1$ are defined on suitable domains.
(a) Find an expression for $h(x)$ where $h(x)=f(g(x))$.
(b) Write down any restriction on the domain of h.

04 I understand that $f(g(x))=x$ implies that $g(x)$ is the inverse of $f(x)$.

1. If $f(x)=3 x-2$ and $g(x)=\frac{x+2}{3}$
(a) Find $f(g(x))$ and $g(f(x))$.
(b) State a relationship between $f(x)$ and $g(x)$.
2. If $f(x)=2 x+5$ and $g(x)=\frac{x-5}{2}$
(a) Find $f(g(x))$ and $g(f(x))$.
(b) State a relationship between $f(x)$ and $g(x)$.

Functions and graphs

05 I can determine the inverse of a linear function.

1. Given $g(x)=5 x+2$, find an expression for $g^{-1}(x)$.
2. Given $h(x)=2 x-6$, find an expression for $h^{-1}(x)$.
3. Given $g(x)=\frac{1}{4} x-3$, find an expression for $g^{-1}(x)$.
4. Given $f(x)=2-4 x$, find an expression for $f^{-1}(x)$.
5. Given $g(x)=\frac{2 x-4}{5}$, find an expression $g^{-1}(x)$.
6. Given $g(x)=6-2 x$, write down an expression for $g\left(g^{-1}(x)\right)$.

06 I can complete the square for any quadratic and understand the connection to its graph.

1. (a) Show that the function $f(x)=3 x^{2}+30 x+73$ can be written in the form $f(x)=a(x+b)^{2}+c$, where a, b and c are constants.
(b) Hence or otherwise find the coordinates of the turning point of function $f(x)$.
2.

(a) Show the function $f(x)=9-8 x-x^{2}$ can be written in the form $f(x)=p(x+q)^{2}+r$ where p, q and r are constants.
(b) Hence or otherwise find the maximum value of $f(x)$.
3. The cost, c pence of running a car for 20 miles at an average speed of $x \mathrm{mph}$ is given by $c=\frac{1}{4} x^{2}-25 x+875$
(a) Express c in the form $p(x-q)^{2}+r$
(b) Find the most economical average speed and hence the cost for 20 miles at this speed

Functions and graphs

4. The height h metres, of a toy rocket is given by $h=60+10 t-t^{2}$ where t seconds is the time of flight
(a) Express h in the form $p(t+q)^{2}+r$
(b) Find the maximum height of the rocket and the time taken to reach it
5. (a) Show that the function $f(x)=4 x^{2}+16 x-5$ can be written in the form $f(x)=a(x+b)^{2}+c$, where a, b and c are constants.
(b) Hence or otherwise, find the coordinates of the turning point of the function f.
6. (a) Express $f(x)=10-6 x-3 x^{2}$ in the form $f(x)=a(x+b)^{2}+c$ where a, b and c are constants.
(b) Find the nature and the coordinates of the turning point of the function.

07 I can identify and sketch a function after a transformation of the form $\boldsymbol{k f}(\boldsymbol{x}), f(\boldsymbol{x})+\boldsymbol{k}, \boldsymbol{f}(\boldsymbol{k x}), f(x+k),-f(x), f(-x)$, or a combination of these.

1. The diagram shows the graph of a function f.
f has a minimum turning point at $(0,-3)$ and a point of inflexion at $(-4,2)$.
(a) Sketch the graph $y=f(-x)$.
(b) On the same diagram, sketch the graph $y=2 f(-x)$.

Functions and graphs

2. The diagram shows the graph of $y=g(x)$.
(a) Sketch the graph of $y=-g(x)$.
(b) On the same diagram, sketch the graph $y=3-g(x)$.

3. The diagram shows the graph of a function $y=f(x)$.

Copy the diagram and on it sketch the graphs of:
(a) $y=f(x-4)$.
(b) $y=2+f(x-4)$.

4. The diagram shows a sketch of the function $y=f(x)$.
(a) Copy the diagram and on it sketch the graph of $y=f(2 x)$.
(b) On a separate diagram sketch the graph of $y=1-f(2 x)$.

Functions and graphs

08 I can sketch logarithmic and exponential functions and determine a

 suitable domain or range for a given function/composite function.1.

The diagram shows a sketch of part of the graph of $y=\log _{5} x$.
(a) Make a copy of the graph of $y=\log _{5} x$.

On your copy, sketch the graph of $y=\log _{5} x+1$.
Find the coordinates of the point where it crosses the x-axis.
(b) Make a second copy of the graph of $y=\log _{5} x$.

On your copy, sketch the graph of $y=\log _{5} \frac{1}{x}$.
2. The functions f and g, defined on suitable domains, are given by $f(x)=\frac{1}{x^{2}-4}$ and $g(x)=2 x+1$.
(a) Find an expression for $h(x)$ where $h(x)=g(f(x))$.

Give your answer as a single fraction.
(b) State a suitable domain for h.

Functions and graphs

3.

Part of the graph of $y=5 \log _{10}(2 x+10)$ is shown in the diagram (not to scale).
This graph crosses the x-axis at the point A and the straight line $y=10$ at the point B.
Find algebraically the x-coordinates of A and B.
4. The diagram shows part of the graph of $y=\log _{b}(x+a)$.

Determine the values of a and b.

5. The diagram shows part of the graph of $y=2^{x}$.
(a) Sketch the graph of $y=2^{-x}-8$.
(b) Find the coordinates of the points where it crosses the x and y axes.

Functions and graphs

6. (a) Given $y=a^{x}$, sketch the graph of $y=a^{x}+1, a>2$.
(b) On the same diagram, sketch the graph of $y=a^{x+1}, a>2$

Prove that the graphs
a) intersect at a point where the x-coordinate is
$\log _{a}\left(\frac{1}{a-1}\right)$

7. Functions $f(x)=3 x-1$ and $g(x)=x^{2}+7$ are defined on the set of real numbers.
(a) Find $h(x)$ where $h(x)=g(f(x))$.
(b) (i) Write down the coordinates of the minimum turning point $y=h(x)$.
(ii) Hence state the range of the function h.
8. Sketch the following pairs of graphs on the same set of axes:
(a) $y=a^{x}$ and $y=3\left(a^{x}\right)$
(b) $y=3^{x}$ and $y=3^{(x+1)}$
(c) $\mathrm{y}=\log _{2} x$ and $\mathrm{y}=\log _{2} 4(x-1)$
(d) $y=\log _{4} x$ and $y=\log _{4} x^{3}$

Functions and graphs

Section D - Cross Topic Exam Style Questions

Functions and Logs

1. Functions f, g and h are defined on suitable domains by $f(x)=x^{2}-x+10 \quad g(x)=5-x \quad$ and $\quad h(x)=\log _{2} x$
(a) Find expressions for $h(f(x))$ and $h(g(x))$.
(b) Hence solve $h(f(x))-h(g(x))=3$.

Functions and Trig

2. Functions a and b are defined on suitable domains by $a(x)=x+30$ and $b(x)=\cos x^{\circ}$.

Show that $b(a(x))=\frac{1}{2}\left(\sqrt{3} \cos x^{\circ}-\sin x^{\circ}\right)$.

Functions and graphs

Section A

R1

1.

(a) $(-2,0),(0,8)$
(b) $(12,0),(0,-3)$
(c) $(5,0),(0,3)$
(d) $(0,0)$
(e) $(-4,0)(4,0)(0,-16)$
(f) $(-9,0)(3,0)(0,-27)$
(g) $(-3,0)(3,0)(0,-18)$
(h) $(-3,0)\left(\frac{1}{2}, 0\right)(0,-3)$

R2
(a) $(x+1)^{2}+4$
(b) $(t-5)^{2}-23$
(c) $\quad(v-1)^{4}+6$
(d) $8-(x+1)^{2}$
(e) $5-(t+2)^{2}$
(f) $2-(x-1)^{2}$

R3
1.
(a)

(b)

(c)

(d)

(a) $(1,0),(3,0),(0,3)$; min at $(2,-1)$

2.

Functions and graphs

(b) $(-2,0),(6,0),(0,-12)$; min at $(2,-6)$

3. (a) $y=(x+3)^{2}-10$; min at $(-3,-10) ; y-$ intercept $(0,-1)$
(a) $y=(x-2)^{2}+1$; min at $(2,1) ; y-$ intercept $(0,5)$
(a) $y=\left(x+\frac{3}{2}\right)^{2}+\frac{7}{4} ; \min$ at $\left(-\frac{3}{2}, \frac{7}{4}\right) ; y-\operatorname{intercept}(0,4)$
(a) $y=\left(x+\frac{5}{2}\right)^{2}-\frac{45}{4}$; min at $\left(-\frac{5}{2},-\frac{45}{4}\right) ; y-\operatorname{intercept}(0,-5)$

Section B - Assessment Standard Section

1.

Functions and graphs
2.

3. $a=3 b=5$
4. $a=-4 b=3$
5.

6.

7. $a=4 b=3 c=-1$

Functions and graphs

8. $a=3 b=4 c=2$
9.

(a) $h(x)=\frac{(2 x+3)^{2}+25}{(2 x+3)^{2}-25}$
(b) $h(x)$ undefined for $x=-4$ and $x=1$.
10. $f^{-1}(x)=\sqrt{\frac{x-1}{3}}$

Section C

01

1.

(a) $\{2,3,4,5,7,11,17,19,23,29\}$
(b) $\{21,23,25,27,29\}$
2. (a) A set containing two 3D shapes
(b) A set containing the first 5 square numbers
3. $7 \in N, W, Z, Q ; \quad-3 \in Z, Q$; $0 \in W, Z, Q ;$ $-\frac{2}{5} \in Q$
4.
(a) T
(b) F
(c) T
(d) T
5.
(a) $3 \in W \quad$ (b) \varnothing
(c) $x \notin A$
(d) $S \subset T$
(e) $P=Q$
6.
(a) $\{2,3,5,7\}$
(b) $\{1,2,5,7,10,14,35,70\}$
7.
(a) $\{2,3\}$
(b) $\{1,2,3\}$
(c) \varnothing
8.
(a) $\{3,4\},\{4\},\{2,4\}$
(b) $\{4\}$
9.
(a) T
(b) F
(c) T
(d) F
(e) T
(f) F
10.
(a) $\{5,6,7\}$
(b) $\{1,2,3,4,5,6,7,8,9,10\}$
(c) $\{8,9,10,11,12\}$
(d) $\{1,2,3,4,11,12\}$
(e) $\{1,2,3,4,8,9,10,11,12\}$
(f) $\{11,12\}$
(g) $\{1,2,3,4\}$
(h) $\{8,9,10\}$
(i) \varnothing

02
1.
(a) $\{x: x \in R, x \neq 1\}$
(b) $\left\{x: x \in R, x \neq \frac{3}{2}\right\}$
(c) $\{x: x \in R, x \neq \pm 4\}$
(d) $\{x: x \in R, x \neq-2, x \neq-6\}$
(e) $\{x: x \in R, x \geq 10\}$
(f) $\quad\{x: x \in R, x \leq-3, x \geq 0\}$

Functions and graphs

03

1.

(a) $\quad f(g(x))=2 x^{2}-3$
(b) $g(f(x))=(2 x-3)^{2}$
(c) $\quad h(f(x))=(2 x-3)^{2}+4$
(d) $f(g(x))=4 x-9$
(e) $g(h(x))=\left(x^{2}+4\right)^{2}$
(f) $\quad h(h(x))=\left(x^{2}+4\right)^{2}+4$
2.
(a) $\quad h(f(x))=\frac{4}{x-1}$
(b) $g(f(x))=\frac{2}{(x-2)^{2}}$
(c) $\quad f(h(x))=\frac{4}{x+1}-2$
(d) $f(g(x))=\frac{2}{x^{2}}-2$
(e) $g(h(x))=\frac{(x+1)^{2}}{8}$
(f) $\quad h(h(x))==\frac{4 x+4}{x+5}$
3.
(a) $g(f(x))=e^{(x+2)}$
(b) $g(g(x))=e^{e^{x}}$
(c) $\quad h(f(x))=\tan (x+2)$
4.
(a) $f(g(x))=3 \sin ^{2} x+2 \sin x-1$
(b) $h(f(x))=\log _{4}\left(3 x^{2}+2 x-1\right)$
(c) $g(g(x))=\sin (\sin x)$
5.
(a) $\quad f(g(x))=4 x-3, g(f(x))=4 x+3$
(b) -9
6.
(a) $\quad h(x)=9 x^{2}-6 x+8$
(b) $\mathbf{i}\left(\frac{1}{3}, 8\right)$
(b)ii $\{x: x \in R, x \geq 8\}$
7.
(a) $h(x)=\frac{1}{2 x-4}$
(b) $x \neq 2$
8.
(a) $\quad h(x)=\frac{1}{3 x+1}$
(b) $x \neq-\frac{1}{3}$

04

1. (a) $f(g(x))=g(f(x))=x$
(b) $f(x)$ and $g(x)$ are inverse functions
2.

(a) $f(g(x))=g(f(x))=x$
(b) $f(x)$ and $g(x)$ are inverse functions

05

1. $g^{-1}(x)=\frac{x-2}{5}$
2. $h^{-1}(x)=\frac{x+6}{2}$
3. $g^{-1}(x)=4(x+3)$
4. $f^{-1}(x)=\frac{2-x}{4}$
5. $g^{-1}(x)=\frac{5 x+4}{2}$

Functions and graphs

06

1.

(a) $f(x)=3(x+5)^{2}-2$
(b) $T P$ at $(-5,-2)$
2.
(a) $f(x)=25-(x+4)^{2}$
(b) $f(x)_{\max }=25$
3.
(a) $c=\frac{1}{4}(x-50)^{2}+250$
(b) 50 mph with a cost of 250 p (£2.50)
4.
(a) $h=85-(t-5)^{2}$
(b) $h_{\max }=85$ metres when $t=5$ secs
5.
(a) $f(x)=4(x+2)^{2}-21$
(b) $(-2,-21)$
6.
(a) $f(x)=13-3(x+1)^{2}$
(b) $(-1,13)$

07
1.
(a)

(b)

2.
(a)
(a)
(a) ${ }^{y} \uparrow$

(b)

Functions and graphs

3.

(a)

(b)

4.

(b)

08

1. (a) Graph translated to pass through $\left(-\frac{1}{5}, 0\right),(1,1),(5,2)$.
(b) Graph reflected in the x-axis to pass through $(1,0),(5,-1)$.
2.

(a) $\frac{x^{2}-2}{x^{2}-4}$
(b) $\quad\{x \in R, x \neq \pm 2\}$
3. $A\left(-\frac{9}{2}, 0\right), B(45,10)$
4. $a=-2, b=5$
5. (a) Graph reflected in the y-axis to pass through $(-1,2),(-2,4)$.
(b) $(-3,0),(0,-7)$
6. (a) (i) Graph translated to pass through $(0,2)$.
(ii) Graph transformed by a factor of a in the y-direction passing through ($0, a$).
(b) Proof

Functions and graphs

7.

(a) $\quad h(x)=9 x^{2}-6 x+8$
(b) mint.p($\left.\frac{1}{3}, 7\right)$ with $\{x \in R: x>7\}$
8.
(a)
(b)

(c) $\quad y=\log _{2} 4(x-1)$
(d)
$y=\log _{4} x^{3}$

Cross Topic Questions

1. (a) $h(f(x))=\log _{2}\left(x^{2}-x+10\right)$ and $h(g(x))=\log _{2}(5-x)$
(b) $x=-10,3$
2. Proof.
