Quadratics and Polynomials

## 5. Quadratics and Polynomials

## Section A - Revision Section

This section will help you revise previous learning which is required in this topic

R1 I have had experience of factorising. (common factor, difference of two squares and quadratic trinomials).

1. Factorise fully
(a) $98-8 x^{2}$
(b) $5 s^{2}-5 t^{2}$
(c) $98-2 x^{2}$
(d) $75 x^{2}-243$
(e) $72-18 x^{2}$
(f) $12 x-3 x^{3}$
(g) $81-x^{4}$
(h) $27 w-12 w^{3}$
(i) $64 a^{4}-4$
2. Factorise fully
(a) $2 x^{2}-7 x+3$
(b) $2 x^{2}+11 x+12$
(c) $3 x^{2}+10 x+8$
(d) $x^{2}+x-6$
(e) $6 x^{2}+7 x+2$
(f) $x^{2}-3 x+2$
(g) $5 x^{2}+4 x-1$
(h) $7 x^{2}+16 x+4$
(i) $2 x^{2}+7 x-15$
3. Factorise fully
(a) $6-x-x^{2}$
(b) $20+11 x-3 x^{2}$
(c) $3+x-2 x^{2}$
(d) $15-7 x-2 x^{2}$
(e) $4-7 x-2 x^{2}$
(f) $15-2 x-x^{2}$
4. Factorise fully
(a) $3 x^{2}+6 x-24$
(b) $15 x^{2} y+5 x$
(c) $2 x^{2}-32$
(d) $5 x^{3}-45 x$
(e) $18 x^{2}-6 x-12$
(f) $12 x^{2} y+8 x y^{3}$
(g) $10 x^{2}+25 x-15$
(h) $6 x^{3}+30 x^{2}+36 x$
(i) $7 x^{2}-28$
(j) $2 x^{2}-10 x+12$
(k) $3 x^{3}+21 x^{2}+30 x$
(l) $6 x^{3}-54 x$

## Quadratics and Polynomials

## R2 I have revised solving Quadratic Equations

1. Solve each of these quadratic equations
(a) $x^{2}+7 x+12=0$
(b) $x^{2}-4=0$
(c) $n^{2}+3 n+2=0$
(d) $5 x^{2}+15 x=0$
(e) $p^{2}+11 p+24=0$
(f) $12 a-3 a^{2}=0$
(g) $s^{2}+6 s+8=0$
(h) $r^{2}-25=0$
(i) $n^{2}+5 n+6=0$
2. Solve each of these quadratic equations
(a) $x^{2}-11 x+24=0$
(b) $4 x^{2}-9=0$
(c) $n^{2}+3 n-10=0$
(d) $5 x^{2}+3 x=0$
(e) $p^{2}-10 p+24=0$
(f) $5 a^{2}-20=0$
(g) $2 n^{2}+7 n+3=0$
(h) $5 r^{2}+7 r+2=0$
(i) $3 n^{2}-4 n+1=0$
(j) $n^{2}+8 n=-15$
(k) $5 r^{2}-44 r+120=-30+11 r$
3. Solve these equations giving your answer to 2 significant figures.
(a) $x^{2}-3 x-1=0$
(b) $2 x^{2}+5 x+1=0$
(c) $5 x^{2}-7 x-2=0$
4. Solve these equations giving your answer to 3 significant figures.
(a) $3 x^{2}-10 x=-2$
(b) $2 x^{2}=6 x-3$
(c) $4 x^{2}+x=1$

R3 I have revised using the discriminant to find the nature of the roots of a quadratic.

Determine the nature of the roots of each quadratic equation using the discriminant.
(a) $x^{2}+8 x+16=0$
(b) $x^{2}-3 x+4=0$
(c) $2 x^{2}+3 x-4=0$
(d) $3 x^{2}-7 x+2=0$
(e) $x^{2}-5 x+3=0$
(f) $2 x^{2}-4 x+2=0$
(g) $4-2 x-x^{2}=0$
(h) $3-3 x+7 x^{2}=0$

## Quadratics and Polynomials

R4 I have revised how to determine where quadratic graph cuts the axes, its turning point and its axis of symmetry.

1. Sketch the graph of $y=(x+3)(x-1)$ showing clearly where the graph cuts the axes, the axis of symmetry and the coordinates of the turning point.
2. Sketch the graph of $y=(x+3)^{2}+6$ showing clearly the coordinates of the turning point and the axis of symmetry.
3. The graph below shows part of a parabola with equation of the form $y=(x+a)^{2}+b$.

The equation of the axis of symmetry of the parabola is $x=3$.
(a) State the value of $a$.
(b) $P$ is the point $(1,0)$. State the coordinates of Q .

4. The graph below shows part of a parabola with equation of the form $y=-(x-6)(2-x)$.
(a) State the coordinates of A and $B$.
(b) State the equation of the axis of symmetry.


## Quadratics and Polynomials

5. The graph below shows part of a parabola with equation of the form $y=(x+a)^{2}+b$.

(a) Write down the equation of the axis of symmetry.
(b) Write down the equation of the parabola.
(c) Find the coordinates of C .
6. The graph below shows part of a parabola with equation of the form $y=(x+a)^{2}+b$.
(a) State the values of $a$ and $b$.
(b) State the equation of the axis of symmetry.
(c) The line PQ is parallel to the $x$-axis.

Find the coordinates of $P$
 and Q .

## Quadratics and Polynomials

R5 I have revised points of intersection of straight lines.
Find the point of intersection between the following straight lines
(1) $5 x+2 y=9$
(2) $3 x+5 y=22$
$2 x+3 y=8$
$5 x-2 y=16$
(3) $5 x-3 y=12$
(4) $4 x-5 y=-22$
$3 x+2 y=-5$
(5) $7 x+8 y=-5$
(6) $6 x+5 y-9=0$
$9 x+10 y=-7$
$2 y-9 x+42=0$
(7) $y=2 x+8$
(8) $y=3 x-14$
$x-y=-5$
$x-2 y=13$

## Quadratics and Polynomials

## Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test for Quadratics and Polynomials (Relationships and Calculus 1.1)

1. (a) (i) Show that $(x-1)$ is a factor of $f(x)=x^{3}-6 x^{2}+11 x-6$.
(ii) Hence factorise $f(x)$ fully.
(b) Solve $x^{3}-6 x^{2}+11 x-6=0$.
2. (a) Show that $x=1$ is a root of $x^{3}+8 x^{2}+11 x-20=0$.
(b) Hence factorise $x^{3}+8 x^{2}+11 x-20$ fully.
3. Solve the cubic equation $f(x)=0$ given the following:

- When $f(x)$ is divided by $2 x-1$, the remainder is zero
- $(x+3)$ is a factor of $f(x)$
- the graph of $y=f(x)$ passes through the point $(2,0)$.

4. State the cubic equation $f(x)$ given the following:

- $x=1$ is a root of $f(x)$
- the graph of $y=f(x)$ passes through the point $(-4,0)$
- when $f(x)$ is divided by $x+5$, the remainder is zero.

5. Find the value of $k$ for which $2 x^{2}+4 x-k=0$ has equal roots.
6. Find the values of $k$ so that the graph of $y=k x^{2}-2 x+3$ does not cut or touch the $x$-axis.

## Quadratics and Polynomials

## Section C - Operational Skills Section

This section provides problems with the operational skills associated with Quadratics and polynomials.

01 Given the nature of the roots of a quadratic equation, I can use the discriminant to find an unknown.

1. Find the value of $k$ for which equation $2 x^{2}-3 k=4 x^{2}+k^{2}-2 k$ has equal roots. $k \neq 0$.
2. Find the smallest integer value of $k$ for which $f(x)=(x-2)\left(x^{2}-2 x+k\right)$ has equal roots.
3. Find the values of $k$ which ensures the following equation has equal roots

$$
\frac{(x-3)^{2}}{x^{2}+3}=k
$$

4. Find two values of $p$ for which the equation

$$
p^{2} x^{2}+2(p+1) x+4=0
$$

has equal roots and solve the equation for $x$ in each case.
5. If the roots of the equation $(x-1)(x+k)=-9$ are equal, find the values of $k$.
6. Find $k$, if the roots of the quadratic equation

$$
2 x^{2}+(4 k+2) x+2 k^{2}=0
$$

are not real.

## Quadratics and Polynomials

7. Find the range of values of k for which $(k+1) x^{2}+4 k x+9=0$ has no real roots.
8. Find the range of values of $m$ for which, $2 x^{2}+5 m x+m=0$, has two real and distinct roots.
9. For what range of values of $k$ does the equation $x^{2}-2 k x+2=k$ have real roots.
10. Calculate the least positive integer value of $k$ so that the graph of $y=k x^{2}-10 x+k$ does not cut the $x-$ axis.

11. (a) Determine the nature of the roots of equation $2 x^{2}+4 x-k=0$ when $k=6$.
(b) Find the value of $k$ for which $2 x^{2}+4 x-k=0$ has equal roots.
12. Prove that for all values of $k$, that the equation $x^{2}-2 x+k^{2}+2=0$ has no real roots

## Quadratics and Polynomials

13. Find the nature of the roots of the equation $(p-1)^{2}+3 p^{2}=6 p-11$.
14. (a) Prove that the roots of the equation,
$\left(9 p^{2}-4 q r\right) x^{2}+2(q+r) x-1=0$, where $p, q, r \in Q$
are real for all values of $p, q$ and $r$.
(b) Show also that if $q=r$ the roots are rational.

02 I can apply the condition for tangency.

1. The point $P(4,4)$ lies on the parabola $y=x^{2}+m x+n$
(a) Find a relationship between $m$ and $n$.
(b) The tangent to the parabola at point P is the line $y=x$.

Find the value of $m$.
(c) Using your values for $m$ and $n$, find the value of the discriminant of $x^{2}+m x+n=0$. What
 feature of the above sketch is confirmed by this value?
2. Show that $y=17-7 x$ is a tangent to the parabola $y=-x^{2}-x+8$ and find the point of contact.
3. The line $y=-8 x+k$ is a tangent to the parabola $y=6 x-x^{2}$.

Find the equation of the tangent.

## Quadratics and Polynomials

4. (a) Show that the line $y=x+5$ is a tangent to the curve with equation $y=\frac{1}{4} x^{2}+3 x+9$.
(b) Find the point of contact of the tangent to the curve.

03 I can factorise a polynomial expression using the factor theorem.

1. Show that $x=-4$ is a root of $x^{3}+8 x^{2}+11 x-20=0$.

Hence factorise $x^{3}+8 x^{2}+11 x-20$ fully.
2. (a) Show that $(x+2)$ is a factor of $f(x)=2 x^{3}+3 x^{2}-5 x-6$.
(b) Hence factorise $f(x)$ fully.
3. (a) Show that $(x+1)$ is a factor of $f(x)=2 x^{3}-3 x^{2}-3 x+2$.
(b) Hence factorise $f(x)$ fully.
4. Show that $(x-2)$ is a factor of $f(x)=x^{3}-5 x^{2}+2 x+8$.
(a) Factorise $x^{3}-5 x^{2}+2 x+8$ fully
(b) Solve $x^{3}+2 x=5 x^{2}-8$
5. Factorise fully
(a) $x^{3}-7 x+6$
(b) $2 x^{3}+3 x^{2}-2 x-3$
(c) $2 x^{3}-x^{2}-13 x-6$
(d) $3 x^{3}+8 x^{2}-5 x-6$
(e) $2 x^{4}+6 x^{3}+6 x^{2}+2 x$
(f) $x^{5}+x^{4}-x-1$

## Quadratics and Polynomials

## 04 I can evaluate an unknown coefficient of a polynomial by applying the remainder and/or the factor theorem.

1. $f(x)=2 x^{3}+a x^{2}+b x+4$.

Given that $(x-2)$ is a factor of $f(x)$, and the remainder when $f(x)$ is divided by $(x-5)$ is 54 , find the values of $a$ and $b$.
2. Find $p$ if $(x-4)$ is a factor of $x^{3}-9 x^{2}+p x-28$.
3. Given that $(x+1)$ is a factor of $2 x^{3}+3 x^{2}+p x-6$
(a) Find the value of $p$
(b) Hence or otherwise, solve $2 x^{3}+3 x^{2}+p x-6=0$
4. Find the value of $k$ if $(x+5)$ is a factor of $3 x^{4}+15 x^{3}-k x^{2}-9 x+5$
5. Given that $(x-1)$ is a factor of $x^{3}+x^{2}-(t+1) x-4$, find the value of $t$.
6. Given that $x=3$ is a root of the equation $x^{4}-3 x^{3}+p x-5$, find $p$.
7. When $x^{4}-3 x^{3}+p x-5$ is divided by $(x+3)$ the remainder is 16 . Find the value of $p$.

## Quadratics and Polynomials

## 05 I can solve polynomial equations

1. Solve
(a) $x^{3}+x^{2}-2 x=0$
(b) $x^{3}-7 x-6=0$
(c) $x^{3}-8 x^{2}+9 x+18=0$
(d) $x^{3}+x^{2}-9 x-9=0$
(e) $x^{3}+3 x^{2}-18 x-40=0$
(f) $x^{3}-3 x+2=0$
2. The graph of $f(x)=x^{2}+6$ and the graph of $g(x)=x^{3}+3 x^{2}-5 x$ intersect at $(-1,7)$.

Find all the points of intersection.
3. A curve with equation $y=x^{3}-x^{2}-3 x+1$ and a straight line with equation $y=2 x-4$ meet at the point $(1,-2)$.

Find the $x$-coordinates of the other points of contact.

## Quadratics and Polynomials

## 06 I can solve a polynomial equation to determine where a curve cuts the $x$ axis.

1. A function is defined on the set of real numbers by $f(x)=(x+3)\left(x^{2}+4\right)$.

Find where the graph of $y=f(x)$ cuts:
(a) the $x$-axis;
(b) the $y$-axis.
2. A function is defined by the formula $g(x)=2 x^{3}-7 x^{2}-17 x+10$ where $x$ is a real number.
(a) Show that $(x-5)$ is a factor of $g(x)$, and hence factorise $g(x)$ fully.
(b) Find the coordinates of the points where the curve with equation $y=g(x)$ crosses the $x$ and $y$-axes.
3. A function is defined by the formula $f(x)=5 x-x^{3}$.

Find the coordinates of the points where the graph of $y=f(x)$ meets the $x$ and $y$-axes.
4. $\quad h(x)=x^{3}-5 x^{2}+3 x+9$
(a) (i) Show that $(x+1)$ is a factor of $h(x)$.
(ii) Hence or otherwise factorise $h(x)$ fully.
(b) One of the turning points of the graph of $y=h(x)$ lies on the $x$-axis.

Write down the coordinates of this turning point.
5. Find where the graph of $y=x^{4}+6 x^{3}-12 x^{2}-88 x-96$ meets the $x$ and $y$-axes.

## Quadratics and Polynomials

## 07 I can find points of intersection by solving polynomial equations.

1. 



Find the coordinates of the points of intersection $\mathrm{A}, \mathrm{B}$ and C where the line $y=x-2$ meets the graph $y=x^{3}+x^{2}-5 x-2$.
2.


Find the coordinates of $\mathrm{A}, \mathrm{B}$ and C the points of intersection between the line $y=2 x+3$ and the curve $y=x^{3}+2 x^{2}+x+1$.

## Quadratics and Polynomials

3. (a) Fully factorise the polynomial $2 x^{3}-11 x^{2}+10 x+8$

(b) Hence or otherwise find the coordinates of the points of intersection of the line $y=2 x-3$ and the graph $y=2 x^{3}-11 x^{2}+12 x+5$
4. Find the points of intersection graph of the line $y+x=2$ and the graph of $y=-x^{3}-4 x^{2}+3 x+18$.


$$
y=-x^{3}-4 x^{2}+3 x+18
$$

## Quadratics and Polynomials

## Section D - Cross Topic Exam Style Questions

## Functions and Quadratics

1. Functions $f$ and $g$ are defined on the set of real numbers by

- $f(x)=x^{2}+3$
- $g(x)=x+4$
(a) Find expressions for
(i) $\quad f(g(x))$
(ii) $g(f(x))$
(b) Show that $f(g(x))+g(f(x))=0$ has no real roots.


## Vectors and Polynomials

2. $\quad \boldsymbol{p}$ and $\boldsymbol{q}$ are vectors given by $\boldsymbol{p}=\left(\begin{array}{c}k^{2} \\ 3 \\ k+1\end{array}\right)$ and $\boldsymbol{q}=\left(\begin{array}{c}k \\ k^{2} \\ -2\end{array}\right)$, where $k>0$.

(a) If $\boldsymbol{p} \cdot \boldsymbol{q}=1-k$, show that $k^{3}+3 k^{2}-k-3=0$.
(b) Show that $(k+3)$ is a factor of $k^{3}+3 k^{2}-k-3$ and hence factorise fully.
(c) Deduce the only possible value of $k$.

## Quadratics and Polynomials

## Vectors and Quadratics

3. P is the point $(1,-3,0), \mathrm{Q}(1,-1,2)$ and $\mathrm{R}(k,-2,0)$
(a) Express $\overrightarrow{Q P}$ and $\overrightarrow{Q R}$ in component form.
(b) Show that $\cos P \widehat{Q} R=\frac{3}{\sqrt{2\left(k^{2}-2 k+6\right)}}$
(c) If angle $P Q R=30^{\circ}$, find the possible values of $k$.

## Quadratics and Polynomials

## Answers

## Section A

## R1

1. 

(a) $2(7+2 x)(7-2 x)$
(b) $5(s+t)(s-t)$
(c) $2(7+x)(7-x)$
(d) $3(5 x+9)(5 x-9)$
(e) $18(2+x)(2-x)$
(f) $3 x(2+x)(2-x)$
(g) $\quad\left(9+x^{2}\right)(3+x)(3-x)$
(h) $3 w(3+2 w)(3-2 w)$
(i) $4\left(4 a^{2}+1\right)(2 a+1)(2 a-1)$
2.
(a) $(2 x-1)(x-3)$
(b) $(2 x+3)(x+4)$
(c) $(3 x+4)(x+2)$
(d) $(x+3)(x-2)$
(e) $(3 x+2)(2 x+1)$
(f) $(x-2)(x-1)$
(g) $(5 x-1)(x+1)$
(h) $(7 x+2)(x+2)$
(i) $(2 x-3)(x+5)$
3.
(a) $(3+x)(2-x)$
(b) $(4+3 x)(5-x)$
(c) $(3-2 x)(1+x)$
(d) $(3-2 x)(5+x)$
(e) $(4+x)(1-2 x)$
(f) $(3-x)(5+x)$
4.
(a) $3(x+4)(x-2)$
(b) $5 x(3 x y+1)$
(c) $2(x+4)(x-4)$
(d) $5 x(x+3)(x-3)$
(e) $6(3 x+2)(x-1)$
(f) $4 x y\left(3 x+2 y^{2}\right)$
(g) $5(2 x-1)(x+3)$
(h) $6 x(x+3)(x+2)$
(i) $7(x+2)(x-2)$
(j) $2(x-2)(x-3)$
(k) $3 x(x+2)(x+5)$
(l) $6 x(x+3)(x-3)$

## R2

1. 

(a) $x=-3,-4$
(b) $x=-2,2$
(c) $n=-2,-1$
(d) $x=-3,0$
(e) $p=-3,-8$
(f) $\quad a=0,4$
(g) $s=-2,-4$
(h) $r=-5,5$
(i) $n=-2,-3$
2.
(a) $x=3,8$
(b) $\mathrm{x}=-\frac{3}{2}, \frac{3}{2}$
(c) $\mathrm{n}=-5,2$
(d) $x=-\frac{3}{5}, 0$
(e) $p=4,6$
(f) $\quad a=2,-2$
(g) $n=-3,-\frac{1}{2}$
(h) $r=-\frac{2}{5},-1$
(i) $n=\frac{1}{3}, 1$
(j) $n=-5,-3$
(k) $r=5,6$
3.
(a) $x=3 \cdot 3,-0 \cdot 30$
(b) $x=-0 \cdot 19,-2 \cdot 7$
(c) $\mathrm{x}=1 \cdot 6,-0 \cdot 24$

## Quadratics and Polynomials

4. 

(a) $x=3 \cdot 12,0 \cdot 214$
(b) $\mathrm{x}=2 \cdot 37,0 \cdot 634$
(c) $\mathrm{x}=-0.390,0 \cdot 640$

## R3

(a) 0 therefore real and equal
(b) -7 therefore no real roots
(c) 41 therefore real and distinct
(d) 25 therefore real and distinct
(e) 13 therefore real and distinct
(f) 0 therefore real and equal
(g) 20 therefore real and distinct
(h) -75 therefore no real roots

## R4

1. 


2.

3.
(a) -3
(b) $(5,0)$
4.
(a) $x=2,6$
(b) $x=4$
5.
(a) $x=-2$
(b) $7=(x+2)^{2}-1$
(c) $(0,3)$
(a) $a=-5, b=1$
(b) $x=5$
(c) $P(0,26), Q(10,26)$
6.

## R5

1. $x=1, y=2$
2. $x=4, y=2$
3. $x=3, y=1$
4. $x=-3, y=2$
5. $x=-3, y=2$
6. $x=4, y=-3$
7. $x=-3, y=2$
8. $x=3, y=-5$

## Quadratics and Polynomials

## Section B

1. 

(a) (i) Proof
(ii) $f(x)=(x-1)(x-2)(x-3)$
(b) $x=1, x=2$ and $x=3$
2.
(a) Proof
(b) $(x-1)(x+4)(x+5)$
3. $x=-3, x=\frac{1}{2}$ and $x=2$
4. $\quad f(x)=(x-1)(x+4)(x+5)$ OR $f(x)=x^{3}+8 x^{2}+11 x-20$
5.
$k=-2$
6. $k>\frac{1}{3}$

## Section C

01

1. $k=-1$
2. If $k=1$ then there are 2 equal roots (of 1 ).

But $k=0$ also produces 2 equal roots (of 2 ).
Therefore $k=0$ is the smaller value.
3. $k=0, k=4$
4. $\quad p=-\frac{1}{3}, 1 \quad x=-6$ repeated, $x=-2$ repeated
5. $k=-7, k=5$
6. $k<-\frac{1}{4}$
7. $-\frac{3}{4}<k<3$
8. $\mathrm{m}<0, m>\frac{8}{25}$
9. $\mathrm{k} \leq-2, \mathrm{k} \geq 1$
10. $k=6$
11. (a) Since $b^{2}-4 \mathrm{ac}>0$ (64) the roots are real and distinct. (b) $k=-2$
12. $-4 k^{2}<0$ which is true for all values of $x$.
13. Since $b^{2}-4 \mathrm{ac}<0(-8)$ there are no real roots.
14. Since $b^{2}-4 \mathrm{ac} \geq 0$ for all $p, q$ and $r$, the roots are always real.

02
1.
(a) $n=-12-4 m$
(b) $m=-7$
(c) Since $b^{2}-4 \mathrm{ac}<0(-15)$, there are no real roots, curve does not cut $x$ axis.
2. $b^{2}-4 a c=0$, one point of contact $\therefore$ line is tangent to parabola. $(3,-4)$

## Quadratics and Polynomials

3. $k=49 . ~ y=-8 x+49$
4. (a) $\mathrm{b}^{2}-4 \mathrm{ac}=0=>$ equal roots $=>$ only one point of contact $=>$ tangency
(b) $(-4,1)$

## 03

1. $(x+4)(x+5)(x-1)$
2. $(x+2)(2 x-3)(x+1)$
3. $(x+1)(2 x-1)(x-2)$
4. (a) $(x-2)(x-4)(x+1)$
(b) $x=2, x=4, x=-1$
5. 

(a) $(x+3)(x-1)(x-2)$
(b) $(2 x+3)(x+1)(x-1)$
(c) $(x+2)(x-3)(2 x+1)$
(d) $(3 x+2)(x-1)(x+3)$
(e) $2 x(x+1)^{3}$
(f) $(x+1)^{2}\left(x^{2}+1\right)(x-1)$

## 04

1. $a=-10, b=10$
2. $p=27$
3. 

(a) $p=-5$
(b) $x=-1,1 \cdot 5,-2$
4. $k=2$
5. $t=-3$
6. $p=\frac{5}{3}$
7. $p=47$

## 05

1. 

(a) $x=-2,0,1$
(b) $x=-1,-2,3$
(c) $x=-1,3,6$
(d) $x=-3,-1,3$
(e) $x=-5,-2,4$
(f) $x=-2,1$
2. $(-3,15),(2,10)$
3. $x= \pm \sqrt{5}$

## 06

1. (a) $(-3,0)$
(b) $(0,12)$
2. 

(a) proof, $(x-5)(2 x-1)(x+2)$
(b) $(-2,0),\left(\frac{1}{2}, 0\right),(5,0) ;(0,10)$
3. $(0,0)(-\sqrt{5}, 0)(\sqrt{5}, 0)$
4.
(a) (i) proof
(ii) $(x+1)(x-3)^{2}$
(b) $(3,0)$
5. $(-6,0),(-2,0)$ repeated, $(4,0)$

## Quadratics and Polynomials

07

1. $\mathrm{A}(-3,-5), \mathrm{B}(0,-2), \mathrm{C}(2,0)$
2. $A(-2,-1), B(-1,1), C(1,5)$
3. 

(a) $(x-2)(2 x+1)(x-4)$
(b) $\left(-\frac{1}{2},-4\right)(2,1)(4,5)$
4. $(-4,6),(-2,4),(2,0)$

## Section D

1. (a) (i) $(x+4)^{2}+3 \quad$ (ii) $x^{2}+7$
(b) Since $b^{2}-4 a c<0(-142)$ No real roots.
2. (a) Proof
(b) $(k+3)(k+1)(k-1)$
(c) $k=1$
3. (a) $\overrightarrow{Q P}=\left(\begin{array}{c}0 \\ -2 \\ -2\end{array}\right), \overrightarrow{Q R}=\left(\begin{array}{c}k-1 \\ -1 \\ -2\end{array}\right)$
(b) Proof
(c) $k=0$ and $k=2$
