Higher Portfolio

Trig Equations

6. Trig Equations

Section A - Revision Section

This section will help you revise previous learning which is required in this topic.

R1 Revision of solving basic Trig Equations

Solve the equations:

1. $5\tan x^{\circ} - 6 = 2,$ $0 \le x \le 360.$ 2. $7\sin x^{\circ} + 1 = -5,$ $0 \le x \le 360$ 3. $4\cos x^{\circ} + 3 = 0,$ $0 \le x \le 360.$ 4. $3\tan x^{\circ} + 3 = 7,$ $0 \le x \le 360.$ 5. $4\sin x^{\circ} - 2 = -3,$ $0 \le x \le 360.$ 6. $9\cos x^{\circ} - 5 = 0,$ $0 \le x \le 360.$

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test for Trigonometry 1 (Expressions and Functions 1.2)

1. Solve

 $2sin2x^{\circ} = \sqrt{3}$, for $0 \le x \le 180$.

2. Solve

 $\sqrt{2}cos2x^{\circ} = 1$, for $0 \le x \le 180$.

3. Solve the equation $sin2x^{\circ} - cosx^{\circ} = 0$ in the interval $0 \le x \le 180$.

- 4. Solve the equation $3sin2x^{\circ} = 2sinx^{\circ}$ for $0 \le x \le 180$.
- 5. Given that $2cosx^{\circ} + 5sinx^{\circ} = \sqrt{29}cos(x 68 \cdot 2)^{\circ}$, solve $2cosx^{\circ} + 5sinx^{\circ} = 0 \cdot 5$, for 0 < x < 360.
- 6. Given that $5cosx^{\circ} + sinx^{\circ} = \sqrt{26}cos(x 11 \cdot 3)^{\circ}$,

solve
$$5cosx^{\circ} + sinx^{\circ} = 2$$
, for $0 < x < 360$.

Section C - Operational Skills Section

This section provides problems with the operational skills associated with Exponentials and Logs

O1 Basic Trig Equations (including radians)

1. Solve the equations:

- (a) $9\tan 2x^\circ 5 = 3$, $0 \le x \le 180$.
- **(b)** $4\sin 3x^{\circ} + 1 = -2$, $0 \le x \le 360$.
- (c) $3\cos 2x^\circ + 2 = 0$, $0 \le x \le 360$.

2. Solve the equations:

- (a) $\tan(x+30)^\circ = 3$, $0 \le x \le 360$.
- **(b)** $5\sin(x+10)^\circ + 3 = -1$, $0 \le x \le 360$.
- (c) $4\cos(x+26)^\circ + 3 = 0$, $0 \le x \le 360$.
- (d) $\sqrt{3} \tan\left(x + \frac{\pi}{5}\right) + 1 = 0, \quad 0 \le x \le 2\pi.$
- (e) $6\sin(x+2) 2 = 1$, $0 \le x \le 2\pi$.
- (f) $\sqrt{2}\cos\left(x+\frac{\pi}{6}\right)+1=0, \quad 0 \le x \le 2\pi.$

02	Trig Equations which require a substitution.					
1.	Solv	we the equation $\sin 2x^\circ - \cos x^\circ = 0$, in the interval $0 \le x < 180$.				
2.	Solve the equation $\sin x^{\circ} - \sin 2x^{\circ} = 0$, in the interval $0 \le x < 360$.					
3.	Solv	Solve the equation $3\cos 2x + 10\cos x - 1 = 0$, in the interval $0 \le x < 2\pi$.				
4.	Solve the equation $\cos 2x^\circ + 2 \sin x^\circ = \sin^2 x^\circ$, in the interval $0 \le x < 360$.					
5.	Solve the equation $2\cos 2x - 5\cos x - 4 = 0$, in the interval $0 \le x < 2\pi$.					
6.	Solve the equation $tan^2 x = 3$, in the interval $0 \le x < \pi$.					
7.	Solve the equation $\sin \theta = 4 \cos \theta$, in the interval $0 \le x < 2\pi$.					
8.	(a)	Express $3\sin x + 4\cos x$ in the form $k\sin(x + a)$ where $k > 0$ and $0 \le a < 2\pi$.				
	(b)	Hence solve the equation $3\sin x + 4\cos x - 3 = 0$ in the interval $0 \le x < 2\pi$.				
9.	(a)	Express $5\sin x^\circ + 3\cos x^\circ$ in the form $k\cos(x-a)^\circ$ where $k > 0$ and $0 \le a < 360$.				
	(b)	Hence solve the equation $5\sin x + 3\cos x = 4$ in the interval $0 \le x < 360$.				

10. Two curves have equations $y = 6 \cos x^{\circ}$ and $y = \sin 2x^{\circ}$.

Find the coordinates of the points of intersection in the range $0 \le x < 360$.

11. Two curves have equations $y = -3\cos 2x^\circ$ and $y = \cos x^\circ + 1$.

Find the coordinates of the points of intersection in the range $0 \le x < 180$.

12. A curves has the equation $= \cos 2x^\circ - 3\cos x^\circ + 2$.

Find the coordinates of the points where the curve cuts the *x*-axis in the range $0 \le x < 360$.

- **13.** A curves has the equation $= \sin 2x^\circ + \cos x^\circ$. Find the coordinates of the points where the curve cuts the *x*-axis in the range $0 \le x < 360$.
- 14. The graph shows two curves which have equations $y = 2\cos^2 x^\circ$ and $y = \sin 2x^\circ$ in the range $0 \le x < 180$.

Find the coordinates of A and B, the points of intersection between the

two curves.

O3 Trig Equations involving sin and cos which can be solved by resolving to a tan equation.

1. Solve the equations

- (a) $\sin x^{\circ} = \cos x^{\circ}$, 0 < x < 360
- (b) $2\sin x^\circ \cos x^\circ = 0$, 0 < x < 360
- (c) $\sin x^\circ + 5\cos x^\circ = 0$, 0 < x < 360
- 2. Solve the equation $\sin 2x^\circ = 2\cos^2 x^\circ$, 0 < x < 360

Section D - Cross Topic Questions

Trigonometry, functions and graphs

- 1. A function f is defined as $f(x) = \sqrt{3} \cos x^\circ + \sin x^\circ$.
 - (a) Express f(x) in the form $k \cos(x a)^\circ$ where k > 0 and $0 \le a < 360$.
 - (b) Sketch the graph of y = f(x) between $0 \le x < 360$, showing clearly the coordinates of the maximum and minimum turning points.
- 2. (a) Express $3 \sin x^\circ + 4 \cos x^\circ$ in the form $k \sin(x+a)^\circ$ where k > 0 and $0 \le a < 360$.
 - (b) Sketch the graph of $y = 3 \sin x^\circ + 4 \cos x^\circ + 1$ between $0 \le x < 360$, showing clearly the coordinates of the maximum and minimum turning points and where the curve cuts the axes.

- **3.** Functions $a(x) = \sin x$, $b(x) = \cos x$ and $c(x) = x \frac{\pi}{4}$ are defined on a suitable set of real numbers.
 - (a) Find expressions for;
 - (i) a(c(x));
 - (ii) b(c(x)).
 - (b) (i) Show that $a(c(x)) = \frac{1}{\sqrt{2}} \sin x \frac{1}{\sqrt{2}} \cos x$.
 - (ii) Find a similar expression for b(c(x)) and hence solve the equation a(c(x)) + b(c(x)) = 1 for $0 \le x \le 2\pi$.
- 4. Functions f and g are defined on suitable domains by $f(x) = \sin x^{\circ}$ and g(x) = 2x.
 - (a) Find expressions for;
 - (i) f(g(x));
 - (ii) g(f(x)).
 - **(b)** Solve 3f(g(x)) = g(f(x)) for $0 \le x \le 360$.

Trigonometry and straight line

- **5.** P is the point (6, 5). The line OP is inclined at an angle of a° to the x-axis.
 - (a) Find the exact values of $\sin 2a^{\circ}$ and $\cos 2a^{\circ}$.

Answers

Section A

R1

1.	<i>x</i> = 58,238	2.	x = 239	,301	3.	<i>x</i> = 139, 221
4.	$x = 53 \cdot 1,233$	5.	<i>x</i> = 194	· 5, 345 · 5	6.	$x = 56 \cdot 3,304$
Section B						
1.	$x^{\circ} = 30^{\circ} and 60^{\circ}$		2.	$x^\circ = 22 \cdot 5^\circ$	and 1	157·5°
3.	$x^{\circ} = 30^{\circ}, 90^{\circ} and 150^{\circ}$	5	4.	$x^\circ = 0^\circ$, 70 ·	$5^{\circ} a$	nd $180\degree$
5.	$x^{\circ} = 152 \cdot 9^{\circ}$ and $343 \cdot$	5°	6.	$x^{\circ} = 78 \cdot 2^{\circ}$	and 3	304 · 4 °
Section C						

01			
1.	(a) $x = 20 \cdot 8, 110.8$	(b)	$x = 76 \cdot 2, 103.8, 196.2, 223.8, 316.2, 343.8$
	(c) $x = 65 \cdot 9, 114.1, 245$	5.9, 29	94.1
2.	(a) $x = 41 \cdot 6,221.6$	(b)	<i>x</i> = 223,297 (c) <i>x</i> = 112.6,195.4
	(d) $x = \frac{19\pi}{30}, \frac{49\pi}{30}$	(e)	$x = 0.62, 4.8$ (f) $x = \frac{7\pi}{12}, \frac{13\pi}{12}$
02			
1. x =	= 30, 90, 150 2.	x = 0	3. $x = 1 \cdot 23, 5 \cdot 05$
4. <i>x</i> =	= 90, 199 · 5, 340 · 5 5.	x = 2	2 · 42, 3 · 86 6. $x = \frac{\pi}{3}, \frac{2\pi}{3}$
7. θ =	= 1 · 33, 4 · 47 8(a) 5 s	sin(x + 0.93) (b) $x = 1.57, 6$
9(a)	$\sqrt{34}\cos(x-59)^{\circ}$ (b)	<i>x</i> =	12 · 3, 105 · 7
10.	(90,0); (270,0)	11.	(60, 1 · 5); (131 · 8, 0 · 34)
1 2.	(0,0);(60,0);(300,0)	1 3.	(90,0); (210,0); (270,0); (330,0)
14.	A(45, 1) and B(90, 0)		

03

1. (a) 45°,225° (b) 26.6°, 206.6°

(c) 78·7°, 258·7°

2. 45°, 90°, 225°, 270°

Section D

Trigonometry and functions and graphs

1(a)
$$2\cos(x-30)^{\circ}$$

(b)

3(a). (i) $\sin\left(x - \frac{\pi}{4}\right)$ (ii) $\cos\left(x - \frac{\pi}{4}\right)$ (b) (i) Proof (ii) $x = \frac{\pi}{4}, \frac{3\pi}{4}$ 4(a). (i) $\sin 2x$ (ii) $2\sin x$ (b) x = 0, 70.5, 180, 289.5, 360

Trigonometry and the straight line

5(a) $\sin 2a = \frac{60}{61}$, $\cos 2a = \frac{11}{61}$ (b) $\tan 2a = \frac{60}{11}$