Higher Portfolio

Trig Equations

6. Trig Equations

Section A - Revision Section

This section will help you revise previous learning which is required in this topic.

R1 Revision of solving basic Trig Equations

Solve the equations:

1. $5 \tan x^{\circ}-6=2, \quad 0 \leq x \leq 360$.
2. $7 \sin x^{\circ}+1=-5, \quad 0 \leq x \leq 360$
3. $4 \cos x^{\circ}+3=0, \quad 0 \leq x \leq 360$.
4. $\quad 3 \tan x^{\circ}+3=7, \quad 0 \leq x \leq 360$.
5. $4 \sin x^{\circ}-2=-3, \quad 0 \leq x \leq 360$.
6. $\quad 9 \cos x^{\circ}-5=0, \quad 0 \leq x \leq 360$.

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test for Trigonometry 1 (Expressions and Functions 1.2)

1. Solve

$$
2 \sin 2 x^{\circ}=\sqrt{3}, \text { for } 0 \leq x \leq 180
$$

2. Solve

$$
\sqrt{2} \cos 2 x^{\circ}=1, \text { for } 0 \leq x \leq 180
$$

3. Solve the equation $\sin 2 x^{\circ}-\cos x^{\circ}=0$ in the interval $0 \leq x \leq 180$.

Trig Equations

4. Solve the equation $3 \sin 2 x^{\circ}=2 \sin x^{\circ}$ for $0 \leq x \leq 180$.
5. Given that $2 \cos x^{\circ}+5 \sin x^{\circ}=\sqrt{29} \cos (x-68 \cdot 2)^{\circ}$, solve $2 \cos x^{\circ}+5 \sin x^{\circ}=0 \cdot 5$, for $0<x<360$.
6. Given that $5 \cos x^{\circ}+\sin x^{\circ}=\sqrt{26} \cos (x-11 \cdot 3)^{\circ}$, solve $5 \cos x^{\circ}+\sin x^{\circ}=2$, for $0<x<360$.

Section C - Operational Skills Section

This section provides problems with the operational skills associated with Exponentials and Logs

01 Basic Trig Equations (including radians)

1. Solve the equations:
(a) $9 \tan 2 x^{\circ}-5=3, \quad 0 \leq x \leq 180$.
(b) $4 \sin 3 x^{\circ}+1=-2, \quad 0 \leq x \leq 360$.
(c) $3 \cos 2 x^{\circ}+2=0, \quad 0 \leq x \leq 360$.
2. Solve the equations:
(a) $\tan (x+30)^{\circ}=3, \quad 0 \leq x \leq 360$.
(b) $5 \sin (x+10)^{\circ}+3=-1, \quad 0 \leq x \leq 360$.
(c) $4 \cos (x+26)^{\circ}+3=0, \quad 0 \leq x \leq 360$.
(d) $\sqrt{3} \tan \left(x+\frac{\pi}{5}\right)+1=0, \quad 0 \leq x \leq 2 \pi$.
(e) $6 \sin (x+2)-2=1, \quad 0 \leq x \leq 2 \pi$.
(f) $\quad \sqrt{2} \cos \left(x+\frac{\pi}{6}\right)+1=0, \quad 0 \leq x \leq 2 \pi$.

Trig Equations

02 Trig Equations which require a substitution.

1. Solve the equation $\sin 2 x^{\circ}-\cos x^{\circ}=0$, in the interval $0 \leq x<180$.
2. Solve the equation $\sin x^{\circ}-\sin 2 x^{\circ}=0$, in the interval $0 \leq x<360$.
3. Solve the equation $3 \cos 2 x+10 \cos x-1=0$, in the interval $0 \leq x<2 \pi$.
4. Solve the equation $\cos 2 x^{\circ}+2 \sin x^{\circ}=\sin ^{2} x^{\circ}$, in the interval $0 \leq x<360$.
5. Solve the equation $2 \cos 2 x-5 \cos x-4=0$, in the interval $0 \leq x<2 \pi$.
6. Solve the equation $\tan ^{2} x=3$, in the interval $0 \leq x<\pi$.
7. Solve the equation $\sin \theta=4 \cos \theta$, in the interval $0 \leq x<2 \pi$.
8. (a) Express $3 \sin x+4 \cos x$ in the form $k \sin (x+a)$ where $k>0$ and $0 \leq a<2 \pi$.
(b) Hence solve the equation $3 \sin x+4 \cos x-3=0$ in the interval $0 \leq x<2 \pi$.
9. (a) Express $5 \sin x^{\circ}+3 \cos x^{\circ}$ in the form $k \cos (x-a)^{\circ}$ where $k>0$ and $0 \leq a<360$.
(b) Hence solve the equation $5 \sin x+3 \cos x=4$ in the interval $0 \leq x<360$.
10. Two curves have equations $y=6 \cos x^{\circ}$ and $y=\sin 2 x^{\circ}$.

Trig Equations

Find the coordinates of the points of intersection in the range $0 \leq x<360$.
11. Two curves have equations $y=-3 \cos 2 x^{\circ}$ and $y=\cos x^{\circ}+1$.

Find the coordinates of the points of intersection in the range $0 \leq x<180$.
12. A curves has the equation $=\cos 2 x^{\circ}-3 \cos x^{\circ}+2$.

Find the coordinates of the points where the curve cuts the x-axis in the range $0 \leq x<360$.
13. A curves has the equation $=\sin 2 x^{\circ}+\cos x^{\circ}$.

Find the coordinates of the points where the curve cuts the x-axis in the range $0 \leq x<360$.
14. The graph shows two curves which have equations $y=2 \cos ^{2} x^{\circ}$ and $y=\sin 2 x^{\circ}$ in the range $0 \leq x<180$.

Find the coordinates of A and B, the points of intersection between the

Trig Equations

two curves.

03 Trig Equations involving sin and cos which can be solved by resolving to a

 tan equation.1. Solve the equations
(a) $\sin x^{\circ}=\cos x^{\circ}, \quad 0<x<360$
(b) $2 \sin x^{\circ}-\cos x^{\circ}=0, \quad 0<x<360$
(c) $\sin x^{\circ}+5 \cos x^{\circ}=0, \quad 0<x<360$
2. Solve the equation $\sin 2 x^{\circ}=2 \cos ^{2} x^{\circ}, \quad 0<x<360$

Section D - Cross Topic Questions

Trigonometry, functions and graphs

1. A function f is defined as $f(x)=\sqrt{3} \cos x^{\circ}+\sin x^{\circ}$.
(a) Express $f(x)$ in the form $k \cos (x-a)^{\circ}$ where $k>0$ and $0 \leq a<360$.
(b) Sketch the graph of $y=f(x)$ between $0 \leq x<360$, showing clearly the coordinates of the maximum and minimum turning points.
2. (a) Express $3 \sin x^{\circ}+4 \cos x^{\circ}$ in the form $k \sin (x+a)^{\circ}$ where $k>0$ and $0 \leq a<360$.
(b) Sketch the graph of $y=3 \sin x^{\circ}+4 \cos x^{\circ}+1$ between $0 \leq x<360$, showing clearly the coordinates of the maximum and minimum turning points and where the curve cuts the axes.

Trig Equations

3. Functions $a(x)=\sin x, b(x)=\cos x$ and $c(x)=x-\frac{\pi}{4}$ are defined on a suitable set of real numbers.
(a) Find expressions for;
(i) $a(c(x))$;
(ii) $b(c(x))$.
(b) (i) Show that $a(c(x))=\frac{1}{\sqrt{2}} \sin x-\frac{1}{\sqrt{2}} \cos x$.
(ii) Find a similar expression for $b(c(x))$ and hence solve the equation $a(c(x))+b(c(x))=1$ for $0 \leq x \leq 2 \pi$.
4. Functions f and g are defined on suitable domains by $f(x)=\sin x^{\circ}$ and $g(x)=2 x$.
(a) Find expressions for;
(i) $\quad f(g(x))$;
(ii) $g(f(x))$.
(b) Solve $3 f(g(x))=g(f(x))$ for $0 \leq x \leq 360$.

Trigonometry and straight line

5. $\quad \mathrm{P}$ is the point $(6,5)$. The line OP is inclined at an angle of a° to the x-axis.
(a) Find the exact values of $\sin 2 a^{\circ}$ and $\cos 2 a^{\circ}$.

(b) The line $O Q$ is inclined at an angle of $2 a^{\circ}$ to the x-axis. Write down the exact value of the gradient of $O Q$.

Trig Equations

Answers

Section A

R1

1. $x=58,238$
2. $x=239,301$
3. $x=139,221$
4. $x=53 \cdot 1,233$
5. $x=194 \cdot 5,345 \cdot 5$
6. $x=56 \cdot 3,304$

Section B

1. $x^{\circ}=30^{\circ}$ and 60°
2. $x^{\circ}=30^{\circ}, 90^{\circ}$ and 150°
3. $\quad x^{\circ}=152 \cdot 9^{\circ}$ and $343 \cdot 5^{\circ}$

Section C

01

1.

(a) $\quad x=20 \cdot 8,110.8$
(b) $x=76 \cdot 2,103.8,196.2,223.8,316.2,343.8$
(c) $\quad x=65 \cdot 9,114.1,245.9,294.1$
2.
(a) $\quad x=41 \cdot 6,221.6$
(b) $x=223,297$
(c) $x=112.6,195.4$
(d) $x=\frac{19 \pi}{30}, \frac{49 \pi}{30}$
(e) $\quad x=0 \cdot 62,4 \cdot 8$
(f) $x=\frac{7 \pi}{12}, \frac{13 \pi}{12}$

02

1. $x=30,90,150$
2. $x=0,60,180,300$
3. $x=1 \cdot 23,5 \cdot 05$
4. $x=90,199 \cdot 5,340 \cdot 5$
5. $x=2 \cdot 42,3 \cdot 86$
6. $x=\frac{\pi}{3}, \frac{2 \pi}{3}$
7. $\theta=1 \cdot 33,4 \cdot 47$
8(a) $5 \sin (x+0 \cdot 93)$
(b) $x=1 \cdot 57,6$
9(a) $\sqrt{34} \cos (x-59)^{\circ}$
(b) $x=12 \cdot 3,105 \cdot 7$
8. $(90,0) ;(270,0)$
9. $(0,0) ;(60,0) ;(300,0)$
10. $(60,1 \cdot 5) ;(131 \cdot 8,0 \cdot 34)$
11. $(90,0) ;(210,0) ;(270,0) ;(330,0)$
12. $A(45,1)$ and $B(90,0)$

Trig Equations

03

1. (a) $45^{\circ}, 225^{\circ}$
(b) $26.6^{\circ}, 206.6^{\circ}$
(c) $78.7^{\circ}, 258.7^{\circ}$
2. $45^{\circ}, 90^{\circ}, 225^{\circ}, 270^{\circ}$

Section D

Trigonometry and functions and graphs

1(a) $2 \cos (x-30)^{\circ}$
(b)

2(a). $5 \sin (x+53 \cdot 1)^{\circ}$
(b)

3(a).
(i) $\sin \left(x-\frac{\pi}{4}\right)$
(ii) $\cos \left(x-\frac{\pi}{4}\right)$
(b)
(i) Proof
(ii) $\quad x=\frac{\pi}{4}, \frac{3 \pi}{4}$
4(a).
(i) $\sin 2 x$
(ii) $2 \sin x$
(b) $\quad x=0,70 \cdot 5,180,289 \cdot 5,360$

Trigonometry and the straight line
5(a) $\sin 2 a=\frac{60}{61}, \quad \cos 2 a=\frac{11}{61}$
(b) $\tan 2 a=\frac{60}{11}$

