Integration

8. Integration

Section A - Revision Section - There is no revision section for this topic.

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test for Integration 1 (Relationships and Calculus 1.3)

1. Find $\int \frac{1}{3 x^{4}} d x$, where $x \neq 0$.
2. Find $\int\left(4 \sqrt{x}+\frac{1}{x^{3}}\right) d x$, where $x>0$.
3. $f^{\prime}(x)=6 x^{2}-2 x$, find $f(x)$.
4. $g^{\prime}(x)=(2 x+3)^{-2}$, find $g(x), x \neq \frac{-3}{2}$.
5. Find $\int 5 \sin \theta d \theta$.
6. Find $\int 8 \cos \theta d \theta$.
7. Find the value of $\int_{1}^{2}\left(3 x^{2}+4\right) d x$.
8. Find the value of $\int_{1}^{2}\left(4-x^{2}\right) d x$.

Integration

Section C - Operational Skills Section

This section provides problems with the operational skills associated with Exponentials and Logs.

01 I can integrate an algebraic function

1. Carry out the following integrations
(a) $\int \sqrt{x} d x$
(b) $\int \sqrt{x^{3}} d x$
(c) $\int \sqrt{x^{5}} d x$
(d) $\int \sqrt[3]{x} d x$
(e) $\int \sqrt[3]{x^{2}} d x$
(f) $\int \sqrt[5]{x^{4}} d x$
(g) $\int \frac{1}{\sqrt{x}} d x$
(h) $\int \frac{1}{\sqrt[3]{x^{2}}} d x$
(i) $\int \frac{1}{\sqrt[3]{x^{4}}} d x$
(j) $\int \frac{1}{\sqrt[5]{x^{3}}} d x$
(k) $\int \frac{2}{\sqrt[3]{x^{8}}} d x$
(l) $\int \frac{3}{\sqrt[4]{x^{3}}} d x$
(m) $\int \frac{1}{2 \sqrt[3]{x^{2}}} d x$
(n) $\int \frac{2}{3 \sqrt[4]{x^{3}}} d x$
(0) $\int \frac{3}{5 \sqrt[3]{x^{7}}} d x$
2. Carry out the following integrations
(a) $\int x^{3}+3 x^{2}+5 x d x$
(b) $\int 3 x^{5}+2 x^{4}-x d x$
(c) $\int x^{2}+6 x-1 d x$
(d) $\int x^{\frac{2}{3}}+4 x^{2} d x$
(e) $\int 3 x^{\frac{1}{2}}-2 x^{-5} d x$
(f) $\int 5 x^{-2}-3 x^{\frac{1}{2}} d x$
(g) $\int \frac{1}{2 \sqrt[3]{x}}+x^{2} d x$
(h) $\int 3 x^{7}-\frac{1}{5 \sqrt[4]{x^{3}}} d x$
(i) $\int \frac{3}{5^{2} \sqrt{x^{5}}}+5 d x$
(j) $\int \frac{2}{3 \sqrt[4]{x^{3}}}+2 x^{2}+x d x$
(k) $\int 5 x^{2}-\frac{1}{\sqrt[3]{x^{2}}} d x$
(l) $\int 4 x^{-2}-4 x^{\frac{2}{3}} d x$
(m) $\int 5 x^{3}-6 x^{-\frac{1}{2}} d x$
(n) $\int 4 x^{2}+\frac{6}{\sqrt[3]{x}} d x$
(o) $\int x^{2}-5-\frac{1}{x^{2}} d x$

Integration

02 I can apply a standard integral of the form $f(x)=(p x+q)^{n}$ with $n \neq-1$.

1. Find
(a) $\int(x+2)^{8} d x$
(b) $\int(2 x+4)^{3} d x$
(c) $\int(5 x+7)^{4} d x$
(d) $\int(2 x-1)^{5} d x$
(e) $\int 6(5-4 x)^{6} d x$
(f) $\int(10-x)^{-10} d x$
(g) $\int 3(4 x+1)^{-3} d x$
(h) $\int 2(5 x-9)^{-5} d x$
(i) $\int(3-7 x)^{-4} d x$
(j) $\int(x-1)^{\frac{1}{2}} d x$
(k) $\int(2 x-1)^{\frac{1}{3}} d x$
(l) $\int(2 x-1)^{\frac{1}{4}} d x$
(m) $\int(2 x-2)^{\frac{1}{2}} d x$
(n) $\int(3 x+4)^{\frac{2}{3}} d x$
(o) $\int(7+3 x)^{\frac{3}{4}} d x$
2. Find
(a) $\int \frac{1}{(5 x+3)^{5}} d x$
(b) $\int \frac{d x}{(3 x-2)^{4}}$
(c) $\int \frac{3}{(4-2 x)^{6}} d x$
(d) $\int \frac{2 d x}{(x-2)^{3}}$
(e) $\int \frac{3 d x}{(4 x+2)^{4}}$
(f) $\int \frac{1}{(5 x-2)^{\frac{1}{2}}} d x$
3. Find
(a) $\int \sqrt{4 x+2} d x$
(b) $\int 6 \sqrt{3 x+1} d x$
(c) $\int \sqrt{9-5 x} d x$
(d) $\int \sqrt[3]{2 x-3} d x$
(e) $\int \sqrt[3]{6 x-2} d x$
(f) $\int \sqrt[4]{2 x+4} d x$
(g) $\int \frac{1}{\sqrt{(3 x-4)}} d x$
(h) $\int \frac{d x}{\sqrt{(x+8)}}$
(i) $\int \frac{2 d x}{\sqrt{(2 x-5)}}$

03 I can integrate $\sin ^{2} x$ and $\cos ^{2} x$ by first making a substitution.

Find

1. $\int \sin ^{2} x d x$
2. $\int \cos ^{2} x d x$
3. $\int 2 \sin ^{2} x d x$
4. $\int 2 \cos ^{2} x d x$

Integration

04 I can evaluate the definite integral of a function.

1. Find
(a) $\int_{0}^{1}\left(x^{2}-3 x+4\right) d x$
(b) $\int_{0}^{1}\left(4 x^{2}+3 x\right) d x$
(c) $\int_{0}^{1}\left(x^{3}+2 x^{2}-1\right) d x$
(d) $\int_{0}^{2}(2 x-1)(x+2) d x$
(e) $\int_{-1}^{1} 2 x^{2}(2 x+1) d x$
(f) $\int_{-2}^{1}\left(2 x^{3}-x^{2}+3 x\right) d x$
2. Find
(a) $\int_{-1}^{1}\left(5 x^{3}-2 x\right) d x$
(b) $\int_{-1}^{1}\left(3 x^{2}-4 x+2\right) d x$
(c) $\int_{-1}^{1}(3 x+2)(x-2) d x$
(d) $\int_{0}^{2}\left(3 x^{2}+8 x-5\right) d x$
(e) $\int_{-2}^{0}(x-3)^{2} d x$
(f) $\int_{-1}^{0}\left(x^{2}-2 x+7\right) d x$
(g) $\int_{0}^{3} x(x-2)(x-3) d x$
(h) $\int_{-2}^{2}(x+2)(x-2) d x$
(i) $\int_{1}^{4}(x-1)(x-2) d x$
3. Evaluate
(a) $\int_{0}^{\pi} \cos 2 x d x$
(b) $\int_{0}^{\pi / 2} \cos 2 x d x$
(c) $\int_{0}^{\pi} \sin 2 x d x$
(d) $\int_{0}^{\pi / 4} \sin 2 x d x$
(e) $\int_{0}^{\pi / 3} \cos 3 x d x$
(f) $\int_{0}^{2 \pi} \cos \frac{1}{2} x d x$
4. Evaluate
(a) $\int_{0}^{\pi}(\sin t+\cos t) d t$
(b) $\int_{0}^{\pi / 4} \sin 4 t+\cos 4 t d t$
(c) $\int_{0}^{\pi / 4} \cos \left(2 t+\frac{\pi}{2}\right) d t$
(d) $\int_{\pi / 6}^{\pi / 4} \sin \left(2 t-\frac{\pi}{3}\right) d t$

Integration

5. Evaluate
(a) $\int_{0}^{1 / 2}\left(x^{3}+12 x^{2}+7\right) d x$
(b) $\int_{-1}^{1 / 2}\left(3 x^{2}-4 x\right) d x$
(c) $\int_{0}^{2 / 3}\left(9 x^{2}+8\right) d x$
(d) $\int_{-1 / 2}^{1}\left(9 x^{2}+2 x-1\right) d x$
(e) $\int_{0}^{\sqrt{3}}(2 x+4) d x$
(f) $\int_{1}^{\sqrt{3}}(10-2 x) d x$

05 I can evaluate one of the limits of a definite integral given the value of the definite integral.

1. Find a, when $a>0$
(a) $\int_{0}^{a}(2 x+2) d x=8$
(b) $\int_{0}^{a} x^{2} d x=\frac{64}{3}$
2. Given that, $\int_{0}^{a} 3 x^{1 / 2} d x=16$, calculate the value of a.
3. Find a for $0 \leq t \leq 2 \pi$ given:
(a) $\int_{0}^{a} \cos t d t=1$
(b) $\int_{0}^{a} \sin t d t=2$
4. Given that $\int_{0}^{a} 5 \sin 3 x d x=\frac{10}{3}, 0 \leq a \leq \pi$, calculate the value of a.
5. Determine p, given that $\int_{1}^{p} x^{1 / 2} d x=42$
6. Given that $\int_{0}^{k} \frac{1}{(4-3 x)^{2}} d x=\frac{1}{36}$, find k.

Integration

06 I can solve differential equations of the form $\frac{d y}{d x}=f(x)$ and give a particular solution.

1. Given the gradient $\frac{d y}{d x}$ of the curve at the point (x, y) and a point on the curve, find the equation of each curve:
a) $\frac{d y}{d x}=3 x^{2}-6 x+1$
b) $\frac{d y}{d x}=4 x^{3}-6 x^{2}$
2. Find the solution to the following differential equations:
a) $\frac{d y}{d x}=4 x^{3}+\frac{2}{x^{3}}$ and $y=0$ when $x=1$
b) $\frac{d y}{d u}=\frac{u^{2}+1}{u^{2}}$ and $y=4$ when $u=2$
3. A curve has gradient given by $\frac{d y}{d x}=\frac{1}{\sqrt{x}}$. The curve passes through the point $(9,10)$. Find the equation of the curve.
4. The graph of $y=f(x)$ passes through the point $\left(\frac{\pi}{9}, 1\right)$. If $f^{\prime}(x)=\sin 3 x$, express y in terms of x.
5. A curve for which $\frac{d y}{d x}=3 \sin 2 x$ passes through the point $\left(\frac{5}{12} \pi, \sqrt{3}\right)$.
6. A point moves in a straight line such that its acceleration a is given by $a=2(4-t)^{\frac{1}{2}}, 0 \leq t \leq 4$. If it starts at rest, find and expression for the velocity v where $a=\frac{d v}{d t}$.
7. The curve $y=f(x)$ is such that $\frac{d y}{d x}=4 x-6 x^{2}$. The curve passes through the point $(-1,9)$. Express y in terms of x.

Integration

Cross Topic Questions

Integration and the wave function

1. (a) The expression $3 \sin x-5 \cos x$ can be written in the form $R \sin (x+a)$ where $R>0$ and $0 \leq a \leq 2 \pi$.

Calculate the values of R and a.
(b) Hence find the value of t, where $0 \leq t \leq 2$, for which

$$
\int_{0}^{t}(3 \cos x+5 \sin x) d x=3
$$

Integration and Functions

2. (a) The functions f and g are defined as $f(x)=3 x+2$ and $g(x)=x^{5}$. Find $g(f(x))$.
(b) If $p^{\prime}(x)=g(f(x))$, and $p\left(-\frac{1}{3}\right)=1$, find $p(x)$.

Integration and Rates of Change

3. The rate of change of the temperature, $T^{\circ} \mathrm{C}$, of a mug of coffee is given by

$$
\frac{d T}{d t}=\frac{1}{25} t-k, 0 \leq t \leq 50
$$

With t, the time elapsed in minutes since pouring and k a constant.
Initially the temperature of the coffee is $100^{\circ} \mathrm{C}$.
After 10 minutes it is $82^{\circ} \mathrm{C}$.
Express T in terms of t.

Integration

Answers

Section B

1. $-\frac{1}{9 x^{3}}+c$
2. $\frac{8 \sqrt{x^{3}}}{3}-\frac{1}{2 x^{2}}+c$
3. $f(x)=2 x^{3}-x^{2}+c$
4. $g(x)=\frac{1}{-2(2 x+3)}+c$
5. $-5 \cos \theta+c$
6. $8 \sin \theta+c$
7. 11 units
8. $1 \frac{2}{3}$ units.

Section C

01

1. (a) $\frac{2}{3} x^{\frac{3}{2}}+c$
(b) $\frac{2}{5} x^{\frac{5}{2}}+c$
(c) $\frac{2}{3} x^{\frac{7}{2}}+c$
(d) $\frac{7}{4} x^{\frac{4}{3}}+c$
(e) $\frac{3}{5} x^{\frac{5}{3}}+c$
(f) $\quad \frac{5}{9} x^{\frac{9}{5}}+c$
(g) $2 x^{\frac{1}{2}}+c$
(h) $3 x^{\frac{1}{3}}+c$
(i) $-\frac{3}{x^{\frac{1}{3}}}+c$
(j) $\frac{5}{2} x^{\frac{2}{5}}+c$
(k) $-\frac{6}{5 x^{\frac{5}{3}}}+c$
(l) $\quad 2 x^{\frac{1}{2}}+c$
(m) $\frac{2}{3} x^{\frac{1}{3}}+c$
(n) $\frac{8}{3} x^{\frac{1}{4}}+c$
(0) $-\frac{9}{20 x^{\frac{4}{3}}}+c$
2. (a) $\frac{x^{4}}{4}+x^{3}+\frac{5}{2} x^{2}+c$
(b) $\frac{x^{6}}{2}+\frac{2}{5} x^{5}+\frac{x^{2}}{2}+c$
(c) $\frac{x^{3}}{3}+3 x^{2}-x+c$
(d) $\frac{3}{5} x^{\frac{5}{3}}+\frac{4}{3} x^{3}+c$
(e) $2 x^{\frac{3}{2}}+\frac{1}{2 x^{4}}+c$
(f) $-\frac{5}{x}-2 x^{\frac{3}{2}}+c$
(g) $\frac{3}{4} x^{\frac{2}{3}}+\frac{1}{3} x^{3}+c$
(h) $\frac{3}{8} x^{8}-\frac{4}{5} x^{\frac{1}{4}}+c$
(i) $-\frac{6}{15 \sqrt{x^{3}}}+5 x+c$
(j) $\frac{8}{3} x^{\frac{1}{4}}+\frac{2}{3} x^{3}+\frac{1}{2} x^{2}+c$
(k) $\frac{5}{3} x^{3}-3 x^{\frac{1}{3}}+c$
(l) $-\frac{4}{x}-\frac{12}{5} x^{\frac{5}{3}}+c$
(m) $\frac{5}{4} x^{4}-12 x^{\frac{1}{2}}+c$
(n) $\frac{4}{3} x^{3}+9 x^{\frac{2}{3}}+c$
(0) $\frac{x^{3}}{3}-5 x-\frac{1}{x}+c$

Integration

02

1. (a) $\frac{1}{9}(x+9)^{9}+c$
(b) $\quad \frac{1}{8}(2 x+4)^{4}+c$
(c) $\frac{1}{25}(5 x+7)^{5}+c$
(d) $\frac{1}{12}(2 x-1)^{6}+c$
(e) $\quad-\frac{6}{28}(5-4 x)^{7}+c$
(f) $\frac{1}{9}(10-x)^{-9}+c$
(g) $\quad-\frac{3}{8}(4 x+1)^{-2}+c$
(h) $\quad-\frac{1}{10}(5 x-9)^{-4}+c$
(i) $\frac{1}{21}(3-7 x)^{-3}+c$
(j) $\frac{2}{3}(x-1)^{\frac{3}{2}}+c$
(k) $\frac{3}{8}(2 x-1)^{\frac{4}{3}}+c$
(l) $\frac{2}{5}(2 x-1)^{\frac{5}{4}}+c$
(m) $\frac{1}{3}(2 x-2)^{\frac{3}{2}}+c$
(n) $\quad \frac{1}{5}(3 x+4)^{\frac{5}{3}}+c$
(o) $\frac{4}{21}(7+3 x)^{\frac{7}{4}}+c$
2. (a) $\quad-\frac{1}{20}(5 x+3)^{-4}+c$ (b) $\quad-\frac{1}{9}(3 x-2)^{-3}+c$
(c) $\frac{3}{10}(4-2 x)^{-5}+c$
(d) $-1(x-2)^{-2}+c$
(e) $\quad-\frac{1}{4}(4 x+2)^{-3}+c$
(f) $\frac{2}{5}(5 x-2)^{\frac{1}{2}}+c$
3. (a) $\frac{1}{6}(4 x+2)^{\frac{3}{2}}+c$
(b) $\frac{4}{3}(3 x+1)^{\frac{3}{2}}+c$
(c) $-\frac{2}{15}(9-5 x)^{\frac{3}{2}}+c$
(d) $\frac{3}{8}(2 x-3)^{\frac{4}{3}}+c$
(e) $\frac{1}{8}(6 x-2)^{\frac{4}{3}}+c$
(f) $\frac{2}{5}(2 x+4)^{\frac{5}{4}}+c$
(g) $\frac{2}{3}(3 x-4)^{\frac{1}{2}}+c$
(h) $\quad 2(x+8)^{\frac{1}{2}}+c$
(i) $2(2 x-5)^{\frac{1}{2}}+c$

03

1. $\frac{1}{2}\left(x-\frac{1}{2} \sin 2 x+c\right)$
2. $\frac{1}{2}\left(x+\frac{1}{2} \sin 2 x+c\right)$
3. $x-\frac{1}{2} \sin 2 x+c$
4. $x+\frac{1}{2} \sin 2 x+c$

04

1. (a) $\frac{17}{6}$
(b) $\frac{17}{6}$
(c) $-\frac{1}{12}$
(d) $\frac{22}{3}$
(e) $\frac{4}{3}$
(f) -3
2. (a) 0
(b) 6
(c) -6
(d) 4
(e) $\frac{98}{3}$
(f) $\frac{25}{3}$
(g) $\frac{9}{4}$
(h) $-\frac{32}{3}$
(i) $\frac{9}{2}$
3. (a) 0
(b) 0
(c) 0
(d) $\frac{1}{2}$
(e) 0
(f) 0
4. (a) 2
(b) $\frac{1}{2}$
(c) $-\frac{1}{2}$
(d) $\frac{2-\sqrt{3}}{4}$

Integration

5. (a) $\frac{257}{64}$
(b) $\frac{21}{8}$
(c) $\frac{56}{9}$
(d) $\frac{21}{8}$
(e) $3+4 \sqrt{3}$
(f) $10 \sqrt{3}-12$

05

1(a) $a=-4, a=21$ (b) $a=4$
2. $a=4$
3(a) $a=\frac{\pi}{2}$
3(b) $\quad a=\pi$
4. $\quad a=\frac{\pi}{3}, \pi$
5. $p=16$
6. $k=\frac{1}{3}$

06
1(a) $y=x^{3}-3 x^{2}+x+1$
1(b) $y=x^{4}-2 x^{3}+10$

2(a) $y=x^{4}-\frac{1}{x^{2}}$
2(b) $y=u-\frac{1}{u}+\frac{5}{2}$
3. $y=2 \sqrt{x}+4$
4. $f(x)=\frac{7}{6}-\frac{1}{3} \cos 3 x$
5. $y=\frac{\sqrt{3}}{4}-\frac{3}{2} \cos 2 x$
6. $V(t)=\frac{32}{3}-\frac{4}{3}(4-t)^{\frac{3}{2}}$
7. $y=2 x^{2}-2 x^{3}+5$

Section D

1.

(a) $\sqrt{34} \sin (x+5 \cdot 25)$
(b) $t=0 \cdot 68$ radians
2.
(a) $(3 x+2)^{5}$
(b) $\quad p(x)=\frac{(3 x+2)^{6}}{18}+\frac{17}{18}$
3. $T=\frac{1}{50} t^{2}-2 t+100$

