

Section A - Revision Section - There is no revision section for this topic.

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test for Integration 1 (Relationships and Calculus 1.3)

1. Find
$$\int \frac{1}{3x^4} dx$$
, where $x \neq 0$.

2. Find
$$\int (4\sqrt{x} + \frac{1}{x^3}) dx$$
, where $x > 0$.

3.
$$f'(x) = 6x^2 - 2x$$
, find $f(x)$.

4.
$$g'(x) = (2x+3)^{-2}$$
, find $g(x), x \neq \frac{-3}{2}$.

5. Find
$$\int 5sin\theta \ d\theta$$
.

- **6.** Find $\int 8\cos\theta \, d\theta$.
- 7. Find the value of $\int_{1}^{2} (3x^{2} + 4) dx$.
- 8. Find the value of $\int_{1}^{2} (4 x^{2}) dx$.

Section C - Operational Skills Section

This section provides problems with the operational skills associated with Exponentials and Logs.

01	l can i	can integrate an algebraic function								
1.	Car	Carry out the following integrations								
	(a)	$\int \sqrt{x} dx$	(b)	$\int \sqrt{x^3} dx$	(c)	$\int \sqrt{x^5} dx$				
	(d)	$\int \sqrt[3]{x} dx$	(e)	$\int \sqrt[3]{x^2} dx$	(f)	$\int \sqrt[5]{x^4} dx$				
	(g)	$\int \frac{1}{\sqrt{x}} dx$	(h)	$\int \frac{1}{\sqrt[3]{x^2}} dx$	(i)	$\int \frac{1}{\sqrt[3]{x^4}} dx$				
	(j)	$\int \frac{1}{\sqrt[5]{x^3}} dx$	(k)	$\int \frac{2}{\sqrt[3]{x^8}} dx$	(l)	$\int \frac{3}{\sqrt[4]{x^3}} dx$				
	(m)	$\int \frac{1}{2\sqrt[3]{x^2}} dx$	(n)	$\int \frac{2}{3\sqrt[4]{\sqrt{x^3}}} dx$	(o)	$\int \frac{3}{5\sqrt[3]{x^7}} dx$				
2.	Car	ry out the following i	integ	rations						
	(a)	$\int x^3 + 3x^2 + 5x \ dx$	(b)	$\int 3x^5 + 2x^4 - x dx$	(c)	$\int x^2 + 6x - 1 dx$				

(d)
$$\int x^{\frac{2}{3}} + 4x^2 dx$$
 (e) $\int 3x^{\frac{1}{2}} - 2x^{-5} dx$ (f) $\int 5x^{-2} - 3x^{\frac{1}{2}} dx$
(c) $\int \frac{1}{2} + x^2 dx$ (b) $\int 2x^7 - \frac{1}{2} dx$ (c) $\int \frac{3}{2} + 5 dx$

(g)
$$\int \frac{2}{2\sqrt[3]{x^2}} + x^2 dx$$
 (h) $\int 3x^7 - \frac{1}{5\sqrt[4]{x^3}} dx$ (l) $\int \frac{1}{5\sqrt[3]{x^5}} + 5 dx$
(j) $\int \frac{2}{3\sqrt[4]{x^3}} + 2x^2 + x dx$ (k) $\int 5x^2 - \frac{1}{\sqrt[3]{x^2}} dx$ (l) $\int 4x^{-2} - 4x^{\frac{2}{3}} dx$

(m)
$$\int 5x^3 - 6x^{-\frac{1}{2}} dx$$
 (n) $\int 4x^2 + \frac{6}{\sqrt[3]{x}} dx$ (o) $\int x^2 - 5 - \frac{1}{x^2} dx$

02	I can apply a standard integral of the form $f(x) = (px + q)^n$ with $n \neq -1$.								
1.	Find								
	(a)	$\int (x+2)^8 dx$	(b)	$\int (2x+4)^3 dx$	(c)	$\int (5x+7)^4 dx$			
	(d)	$\int (2x-1)^5 dx$	(e)	$\int 6(5-4x)^6 dx$	(f)	$\int (10-x)^{-10} dx$			
	(g)	$\int 3(4x+1)^{-3} dx$	(h)	$\int 2(5x-9)^{-5} dx$	(i)	$\int (3-7x)^{-4} dx$			
	(j)	$\int (x-1)^{\frac{1}{2}} dx$	(k)	$\int (2x-1)^{\frac{1}{3}} dx$	(l)	$\int (2x-1)^{\frac{1}{4}} dx$			
	(m)	$\int (2x-2)^{\frac{1}{2}} dx$	(n)	$\int (3x+4)^{\frac{2}{3}} dx$	(o)	$\int (7+3x)^{\frac{3}{4}} dx$			
2.	Find								
	(a)	$\int \frac{1}{(5x+3)^5} dx$	(b)	$\int \frac{dx}{(3x-2)^4}$	(c)	$\int \frac{3}{(4-2x)^6} dx$			
	(d)	$\int \frac{2 dx}{(x-2)^3}$	(e)	$\int \frac{3 dx}{(4x+2)^4}$	(f)	$\int \frac{1}{(5x-2)^{\frac{1}{2}}} dx$			
3.	Find								
	(a)	$\int \sqrt{4x+2} dx$	(b)	$\int 6\sqrt{3x+1} dx$	(c)	$\int \sqrt{9-5x} dx$			
	(d)	$\int \sqrt[3]{2x-3} dx$	(e)	$\int \sqrt[3]{6x-2} dx$	(f)	$\int \sqrt[4]{2x+4} dx$			
	(g)	$\int \frac{1}{\sqrt{(3x-4)}} dx$	(h)	$\int \frac{dx}{\sqrt{(x+8)}}$	(i)	$\int \frac{2dx}{\sqrt{(2x-5)}}$			

O3 I can integrate $\sin^2 x$ and $\cos^2 x$ by first making a substitution.

Find

- **1.** $\int \sin^2 x \, dx$ **2.** $\int \cos^2 x \, dx$ **3.** $\int 2\sin^2 x \, dx$
- 4. $\int 2\cos^2 x \, dx$

04	I can evaluate the definite integr	al of a function.
1.	Find	
	(a) $\int_0^1 (x^2 - 3x + 4) dx$	(b) $\int_0^1 (4x^2 + 3x) dx$
	(c) $\int_0^1 (x^3 + 2x^2 - 1) dx$	(d) $\int_0^2 (2x-1)(x+2) dx$
	(e) $\int_{-1}^{1} 2x^2 (2x+1) dx$	(f) $\int_{-2}^{1} (2x^3 - x^2 + 3x) dx$
2.	Find	
	(a) $\int_{-1}^{1} (5x^3 - 2x) dx$	(b) $\int_{-1}^{1} (3x^2 - 4x + 2) dx$
	(c) $\int_{-1}^{1} (3x+2)(x-2) dx$	(d) $\int_0^2 (3x^2 + 8x - 5) dx$
	(e) $\int_{-2}^{0} (x-3)^2 dx$	(f) $\int_{-1}^{0} (x^2 - 2x + 7) dx$
	(g) $\int_0^3 x(x-2)(x-3) dx$	(h) $\int_{-2}^{2} (x+2)(x-2) dx$
	(i) $\int_1^4 (x-1)(x-2) dx$	
3.	Evaluate	

- (a) $\int_0^{\pi} \cos 2x \, dx$ (b) $\int_0^{\pi/2} \cos 2x \, dx$ (c) $\int_0^{\pi} \sin 2x \, dx$ (d) $\int_0^{\pi/4} \sin 2x \, dx$
- (e) $\int_0^{\pi/3} \cos 3x \ dx$ (f) $\int_0^{2\pi} \cos \frac{1}{2}x \ dx$

4. Evaluate

(a)
$$\int_0^{\pi} (\sin t + \cos t) dt$$

(c)
$$\int_0^{\pi/4} \cos\left(2t + \frac{\pi}{2}\right) dt$$

(b) $\int_0^{\pi/4} \sin 4t + \cos 4t \, dt$

(d) $\int_{\pi/6}^{\pi/4} \sin\left(2t - \frac{\pi}{3}\right) dt$

5. Evaluate

(a)
$$\int_{0}^{1/2} (x^3 + 12x^2 + 7) dx$$

(b) $\int_{-1}^{1/2} (3x^2 - 4x) dx$
(c) $\int_{0}^{2/3} (9x^2 + 8) dx$
(d) $\int_{-1/2}^{1} (9x^2 + 2x - 1) dx$
(e) $\int_{0}^{\sqrt{3}} (2x + 4) dx$
(f) $\int_{1}^{\sqrt{3}} (10 - 2x) dx$

05 I can evaluate one of the limits of a definite integral given the value of the definite integral.

1. Find a, when
$$a > 0$$

(a) $\int_0^a (2x+2)dx = 8$ (b) $\int_0^a x^2 dx = \frac{64}{3}$

2. Given that, $\int_0^a 3x^{1/2} dx = 16$, calculate the value of a.

3. Find a for
$$0 \le t \le 2\pi$$
 given:
(a) $\int_0^a \cos t \, dt = 1$ (b) $\int_0^a \sin t \, dt = 2$

4. Given that $\int_0^a 5sin 3x \, dx = \frac{10}{3}, \, 0 \le a \le \pi$, calculate the value of a.

5. Determine p, given that
$$\int_{1}^{p} x^{1/2} dx = 42$$

6. Given that
$$\int_0^k \frac{1}{(4-3x)^2} dx = \frac{1}{36}$$
, find *k*.

O6 I can solve differential equations of the form $\frac{dy}{dx} = f(x)$ and give a particular solution.

1. Given the gradient $\frac{dy}{dx}$ of the curve at the point (x, y) and a point on the curve, find the equation of each curve:

a)
$$\frac{dy}{dx} = 3x^2 - 6x + 1$$
 (3,4)

b)
$$\frac{dy}{dx} = 4x^3 - 6x^2$$
 (1,9)

2. Find the solution to the following differential equations:

a)
$$\frac{dy}{dx} = 4x^3 + \frac{2}{x^3}$$
 and $y = 0$ when $x = 1$

b)
$$\frac{dy}{du} = \frac{u^2 + 1}{u^2}$$
 and $y = 4$ when $u = 2$

3. A curve has gradient given by $\frac{dy}{dx} = \frac{1}{\sqrt{x}}$. The curve passes through the point (9,10). Find the equation of the curve.

4. The graph of y = f(x) passes through the point $\left(\frac{\pi}{9}, 1\right)$.

If $f'(x) = \sin 3x$, express y in terms of x.

- 5. A curve for which $\frac{dy}{dx} = 3 \sin 2x$ passes through the point $\left(\frac{5}{12}\pi, \sqrt{3}\right)$.
- 6. A point moves in a straight line such that its acceleration a is given by $a = 2(4-t)^{\frac{1}{2}}, 0 \le t \le 4$. If it starts at rest, find and expression for the velocity v where $a = \frac{dv}{dt}$.
- 7. The curve y = f(x) is such that $\frac{dy}{dx} = 4x 6x^2$. The curve passes through the point (-1, 9). Express y in terms of x.

Cross Topic Questions

Integration and the wave function

1. (a) The expression $3 \sin x - 5 \cos x$ can be written in the form $R \sin(x + a)$ where R > 0 and $0 \le a \le 2\pi$.

Calculate the values of R and a.

(b) Hence find the value of t, where $0 \le t \le 2$, for which

$$\int_{0}^{t} (3\cos x + 5\sin x) \, dx = 3$$

Integration and Functions

(a) The functions f and g are defined as f(x) = 3x + 2 and g(x) = x⁵.
Find g(f(x)).

(b) If
$$p'(x) = g(f(x))$$
, and $p(-\frac{1}{3}) = 1$, find $p(x)$.

Integration and Rates of Change

3. The rate of change of the temperature, $T^{\circ}C$, of a mug of coffee is given by

$$\frac{dT}{dt} = \frac{1}{25}t - k, 0 \le t \le 50$$

With t, the time elapsed in minutes since pouring and k a constant.

Initially the temperature of the coffee is 100°C.

After 10 minutes it is 82°C.

Express T in terms of t.

Answers

Section **B**

1.	$-\frac{1}{9x^3}+c$	2.	$\frac{8\sqrt{x^3}}{3} - \frac{1}{2x^2} + C$		
3.	$f(x) = 2x^3 - x^2 + c$	4.	$g(x) = \frac{1}{-2(2x+3)} + c$	5.	$-5cos\theta + c$
6.	$8sin\theta + c$	7.	11 units	8.	$1\frac{2}{3}$ units.

Section C

01				
1. (a)	$\frac{2}{3}x^{\frac{3}{2}} + c$	(b)	$\frac{2}{5}x^{\frac{5}{2}} + c$	(c) $\frac{2}{3}x^{\frac{7}{2}} + c$
(d)	$\frac{7}{4}x^{\frac{4}{3}} + c$	(e)	$\frac{3}{5}x^{\frac{5}{3}} + c$	(f) $\frac{5}{9}x^{\frac{9}{5}} + c$
(g)	$2x^{\frac{1}{2}}+c$	(h)	$3x^{\frac{1}{3}} + c$	(i) $-\frac{3}{x^{\frac{1}{3}}}+c$
(j)	$\frac{5}{2}x^{\frac{2}{5}}+c$	(k)	$-\frac{6}{5x^{\frac{5}{3}}}+c$	(1) $2x^{\frac{1}{2}} + c$
(m)	$\frac{2}{3}x^{\frac{1}{3}} + c$	(n)	$\frac{\frac{8}{3}x^{\frac{1}{4}}+c}{3}$	(o) $-\frac{9}{20x^{\frac{4}{3}}}+c$
2. (a)	$\frac{x^4}{4} + x^3 + \frac{5}{2}x^2 + c$		(b)	$\frac{x^6}{2} + \frac{2}{5}x^5 + \frac{x^2}{2} + c$
(c)	$\frac{x^3}{3} + 3x^2 - x + c$		(d)	$\frac{3}{5}x^{\frac{5}{3}} + \frac{4}{3}x^3 + c$
(e)	$2x^{\frac{3}{2}} + \frac{1}{2x^4} + c$		(f)	$-\frac{5}{x}-2x^{\frac{3}{2}}+c$
(g)	$\frac{3}{4}x^{\frac{2}{3}} + \frac{1}{3}x^{3} + c$		(h)	$\frac{3}{8}x^8 - \frac{4}{5}x^{\frac{1}{4}} + c$
(i)	$-\frac{6}{15\sqrt{x^3}} + 5x + c$		(j)	$\frac{8}{3}x^{\frac{1}{4}} + \frac{2}{3}x^{3} + \frac{1}{2}x^{2} + c$
(k)	$\frac{5}{3}x^3 - 3x^{\frac{1}{3}} + c$		(l)	$-\frac{4}{x}-\frac{12}{5}x^{\frac{5}{3}}+c$
(m)	$\frac{5}{4}x^4 - 12x^{\frac{1}{2}} + c$		(n)	$\frac{4}{3}x^3 + 9x^{\frac{2}{3}} + c$
(0)	$\frac{x^3}{3} - 5x - \frac{1}{x} + c$			

02									
1. (a)	$\frac{1}{9}(x+9)^9 + c$	(b)	$\frac{1}{8}(2x)$	+ 4) ⁴ +	- C	(c)	$\frac{1}{25}(5x)$	$(c + 7)^5 + c$	
(d)	$\frac{1}{12}(2x-1)^6+c$	(e)	$-\frac{6}{28}($	5 - 4x	$b^{7} + c$	(f)	$\frac{1}{9}(10$	$(-x)^{-9} + c$	
(g)	$-\frac{3}{8}(4x+1)^{-2}+6$	c (h)	$-\frac{1}{10}($	5x - 9	$^{-4} + c$	(i)	$\frac{1}{21}(3$	$(-7x)^{-3} + c$	
(j)	$\frac{2}{3}(x-1)^{\frac{3}{2}}+c$	(k)	$\frac{3}{8}(2x)$	$(-1)^{\frac{4}{3}} +$	- C	(l)	$\frac{2}{5}(2x)$	$(-1)^{\frac{5}{4}} + c$	
(m)	$\frac{1}{3}(2x-2)^{\frac{3}{2}}+c$	(n)	$\frac{1}{5}(3x)$	$(+ 4)^{\frac{5}{3}} +$	- C	(0)	$\frac{4}{21}(7)$	$(x+3x)^{\frac{7}{4}}+c$	
2. (a)	$-\frac{1}{20}(5x+3)^{-4}+$	c (b)	$-\frac{1}{9}(3$	$(x-2)^{-1}$	⁻³ + c	(c)	$\frac{3}{10}(4$	$(-2x)^{-5} + c$	
(d)	$-1(x-2)^{-2}+c$	(e)	$-\frac{1}{4}(4$	$(x + 2)^{-1}$	⁻³ + c	(f)	$\frac{2}{5}(5x)$	$(-2)^{\frac{1}{2}} + c$	
3. (a)	$\frac{1}{6}(4x+2)^{\frac{3}{2}}+c$	(b)	$\frac{4}{3}(3x)$	$(+1)^{\frac{3}{2}} +$	- C	(c)	$-\frac{2}{15}($	$(9-5x)^{\frac{3}{2}}+c$	
(d)	$\frac{3}{8}(2x-3)^{\frac{4}{3}}+c$	(e)	$\frac{1}{8}(6x)$	$(-2)^{\frac{4}{3}} +$	- C	(f)	$\frac{2}{5}(2x)$	$(+ 4)^{\frac{5}{4}} + c$	
(g)	$\frac{2}{3}(3x-4)^{\frac{1}{2}}+c$	(h)	2(<i>x</i> +	$(8)^{\frac{1}{2}} + ($	C	(i)	2(2 <i>x</i>	$(-5)^{\frac{1}{2}} + c$	
03									
1. $\frac{1}{2}(x - \frac{1}{2}\sin 2x + c)$ 2. $\frac{1}{2}(x + \frac{1}{2}\sin 2x + c)$									
3.	$x - \frac{1}{2}\sin 2x + c$		4. <i>x</i>	$+\frac{1}{2}\sin^2$	2x + c				
04									
1. (a)	$\frac{17}{6}$ (b) $\frac{17}{6}$	(c) -	$\frac{1}{12}$	(d) $\frac{2}{3}$	2	(e) $\frac{4}{3}$	<u>-</u> -	(f) -3	
2. (a)	0 (b) 6	(c) -	6	(d) 4		(e) -	1 <u>8</u> 3	(f) $\frac{25}{3}$	
(g)	$\frac{9}{4}$ (h) $-\frac{32}{3}$	(i) $\frac{9}{2}$							
3. (a)	0 (b) 0	(c)	0	(d)	$\frac{1}{2}$	(e)	0	(f) 0	
4. (a)	2 (b) $\frac{1}{2}$	(c)	$-\frac{1}{2}$	(d)	$\frac{2-\sqrt{3}}{4}$				

5. (a)
$$\frac{257}{64}$$
 (b) $\frac{21}{8}$ (c) $\frac{56}{9}$ (d) $\frac{21}{8}$ (e) $3+4\sqrt{3}$
(f) $10\sqrt{3}-12$
05
1(a) $a = -4, a = 2$ 1(b) $a = 4$
3(b) $a = \pi$
4. $a = \frac{\pi}{3}, \pi$
5. $p = 16$
6. $k = \frac{1}{3}$
06
1(a) $y = x^3 - 3x^2 + x + 1$
1(b) $y = x^4 - 2x^3 + 10$
2(a) $y = x^4 - \frac{1}{x^2}$
2(b) $y = u - \frac{1}{u} + \frac{5}{2}$
3. $y = 2\sqrt{x} + 4$
4. $f(x) = \frac{7}{6} - \frac{1}{3}\cos 3x$
5. $y = \frac{\sqrt{3}}{4} - \frac{3}{2}\cos 2x$
6. $V(t) = \frac{32}{3} - \frac{4}{3}(4-t)^{\frac{3}{2}}$
7. $y = 2x^2 - 2x^3 + 5$
Section D
1. (a) $\sqrt{34}\sin(x + 5 \cdot 25)$ (b) $t = 0.68$ radians
2. (a) $(3x + 2)^5$
(b) $p(x) = \frac{(3x+2)^6}{18} + \frac{17}{18}$

$$T = \frac{1}{50}t^2 - 2t + 100$$