Higher Portfolio

Straight Line

9. Straight Line

Section A - Revision Section

This section will help you revise previous learning which is required in this topic.

R1 I have revised National 5 straight line.

1. Find the gradient of the line joining each pair of points
(a) $\mathrm{T}(3,2)$ and $\mathrm{R}(4,4)$
(b) $\mathrm{A}(-1,3)$ and $\mathrm{Q}(4,8)$
(c) $\mathrm{C}(-3,-2)$ and $\mathrm{S}(7,3)$
(d) $\mathrm{V}(0,3)$ and $\mathrm{L}(-3,9)$
(e) $\mathrm{B}(1,4)$ and $\mathrm{H}(-1,-2)$
(f) $\quad \mathrm{G}(-3,4)$ and $\mathrm{W}(-1,8)$
(g) $\mathrm{K}(9,-2)$ and $\mathrm{N}(5,-12)$
(h) $X(-7,-4)$ and $E(-3,-2)$
2. Write down the gradient and y-intercept of each the line.
(a) $y=3 x+2$
(b) $y=\frac{5}{8} x-7$
(c) $y=2-3 x$
(d) $y=4-\frac{3}{4} x$
(e) $y=x-3$
(f) $y=\frac{1}{2} x+9$
3. Rearrange the equation of each line so that it is in the form $y=m x+c$ and write down its gradient and y-intercept.
(a) $3 y-5 x=3$
(b) $4 x+3 y=9$
(c) $2 x-y=-12$
(d) $5 y+2 x=0$
(e) $2 y-6 x+15=0$
(f) $4 x-3 y-7=0$
(g) $5 x+2 y+6=0$
(h) $8 y+4 x-11=0$

Straight Line

4. Write down the equation, in the form $y=m x+c$ where possible, of each straight line described.
(a) The straight line with gradient of -2 and passing through the point $(3,-2)$.
(b) A straight line passes through the point $(0,7)$, with a gradient of 6 .
(c) A straight line parallel to the x-axis and passes through $(-2,4)$.
(d) A straight line passes through the point $(0,11)$, with a gradient of -2 .
(e) A straight line parallel to the y-axis and passes through $(5,1)$.
(f) A straight line has a gradient of $\frac{1}{2}$ and passes through the point $(-1,4)$.
(g) A straight line passes through the point $(0,-3)$, with a gradient of 2.

R2. I can find the Distance between 2 points using the Distance Formula.
Use the distance formula to calculate the length of the straight line joining each pair of points. Leave your answer as a surd.
(1) $A(1,5)$ and $B(3,3)$
(2) $\mathrm{P}(-7,1)$ and $\mathrm{Q}(3,8)$
(3) $C(-3,-5)$ and $D(7,1)$
(4) $\mathrm{V}(0,3)$ and $\mathrm{W}(-7,9)$
(5) $\mathrm{G}(7,3)$ and $\mathrm{H}(-1,-2)$
(6) $\quad \mathrm{R}(-2,3)$ and $\mathrm{S}(-1,8)$
(7) $K(9,-5)$ and $L(2,-12)$
(8) $X(-7,-3)$ and $Y(-1,-2)$

Straight Line

R3 I can use the Midpoint Formula.

1. Find the midpoint of each pair of points
(a) $\mathrm{A}(-3,1)$ and $\mathrm{B}(1,3)$
(b) $\quad \mathrm{P}(1,4)$ and $\mathrm{Q}(9,8)$
(c) $\mathrm{C}(3,-3)$ and $\mathrm{D}(-6,1)$
(d) $V(-7,1)$ and $W(3,9)$
(e) G(2,4) and H(-2, -2)
(f) $\quad \mathrm{R}(-6,2)$ and $\mathrm{S}(-2,8)$
(g) $\mathrm{K}(-3,-3)$ and $\mathrm{L}(3,-11)$
(h) $X(0,-4)$ and $Y(-4,-2)$
2. The Line $C D$ has the midpoint $(5,3)$ and the point C has coordinates $(-3,2)$.

Find the coordinates of D.
3. The Line EF has the midpoint $(-5,3)$ and the point F has coordinates $(3,11)$.

Find the coordinates of E .

R4 I can calculate the gradient of perpendicular lines.

1. Write down the gradient of the line perpendicular to the gradient given
(a) $m=3$
(b) $m=-2$
(c) $m=6$
(d) $m=\frac{1}{3}$
(e) $m=-\frac{1}{4}$
(f) $m=\frac{1}{5}$
(g) $m=-\frac{2}{3}$
(h) $m=\frac{5}{4}$
(i) $m=-\frac{3}{5}$

Straight Line

2. Write down the gradient of the line perpendicular to the given line
(a) $y=5 x+2$
(b) $y=\frac{2}{3} x-7$
(c) $y=2-3 x$
(d) $y=4-\frac{1}{2} x$
(e) $y=3 x-3$
(f) $y=x+9$
(g) $y-4 x+12=0$
(h) $3 x-y-8=0$
(i) $3 x-2 y+7=0$
(j) $8 y+4 x-2=0$

R5 I can find the point of intersection of straight lines.

Find the point of intersection between each pair of lines
(1) $3 x+4 y=-7 ;$ and $2 x+y=-3$
(2) $y=-x+12 ;$ and $\quad y=x-4$
(3) $y=-x ; \quad$ and $\quad 4 x+3 y=3$
(4) $x+y=5 ; \quad$ and $\quad x-y=2$

Straight Line

Section B - Assessment Standard Section

This section will help you practise for your Assessment Standard Test for Straight Line (Applications 1.1)

1. Find the equation of the line passing through $(-1,5)$, parallel to the line with equation $y=-2 x+1$.
2. Find the equation of the line passing through $(1,-6)$, parallel to the line with equation $2 y+6 x=4$.
3. $A B C D$ is a kite.

Diagonal AC has equation $y=-2 x+3$.
B has the co-ordinates $(4,3)$.
Find the equation of the diagonal BD.

4. GH is a perpendicular bisector of EF .

The equation of EF is $y=3 x+11$.
The midpoint of EF is $(-2,5)$.

Find the equation of GH.

Straight Line

5. Children's play chutes are categorised by their gradient as shown in the table.

Chute category	Gradient (m) of slope
Safe	$0 \cdot 5<m \leq 1 \cdot 2$
Unsafe	$m>1 \cdot 2$

To which category does the chute represented in the diagram above belong?

Straight Line

Section C - Operational Skills Section

This section provides problems with the operational skills associated with The Straight Line

```
01 I can apply \(m=\tan \theta\) in the context of a problem.
```

1. Find the equation of the line $A B$, where A is the point $(-3,0)$ and the angle BAO is 30°.

2. Find the size of the angle p° that the line joining the points $A(0,-2)$ and $B(4 \sqrt{3}, 2)$ makes with the positive direction of the x-axis.

3. A straight line has equation $3 x+2 y-1=0$.

This line is inclined to the x-axis by an angle of a°.
Find the size of angle a°.

Straight Line

02 I can solve straight line problems involving parallel and perpendicular lines.

1. Find the equation of the straight line through the point $(-1,5)$ which is parallel to the line with equation $3 x-y+1=0$.
2. Find the equation of the straight line which passes through the point $(-1,4)$ and is perpendicular to the line with equation $4 x+y-3=0$.
3. \quad The point P has coordinates $(1,12)$. The straight lines with equations $x+3 y-7=0$ and $2 x+5 y=11$ intersect at Q .
(a) Find the gradient of PQ.
(b) Hence show that $P Q$ is perpendicular to only one of the lines.
4. $\quad \mathrm{ABCD}$ is a parallelogram.

A is the point $(3,0), B$ is the point $(5,6)$ and D lies on the x axis. The diagonal $B D$ is perpendicular to side $A B$.
(a) Show that the equation of BD is $x+3 y-23=0$.
(b) Hence find the coordinates of C and D.

Straight Line

O3 I know the properties of: midpoints; altitudes; medians; perpendicular bisectors and can apply these in problems (including points of intersection).

1. A quadrilateral has vertices $\mathrm{A}(-2,8), \mathrm{B}(6,12), \mathrm{C}(7,5)$ and $D(1,-3)$ as shown in the diagram.
(a) Find the equation of diagonal BD.
(b) The equation of diagonal AC is $x+3 y=22$. Find the coordinates of E , the point of intersection of the diagonals.

(c) (i) Find the equation of the perpendicular bisector of $A B$.
(ii) Show that this line passes through E .
2. Triangle $A B C$ has vertices
$A(-2,6), B(-4,-2)$ and $C(4,2)$ as shown. Find
(a) the equation of the line p, the median from C of triangle $A B C$.

(b) the equation of the line q, the perpendicular bisector of $B C$.
(c) the coordinates of the point of intersection of the lines p and q.

Straight Line

3. The diagram shows rectangle $A B C D$ with $A(7,1)$ and $D(5,5)$.

(a) Find the equation of AD.
(b) The line from A with equation $x+3 y=10$ intersects with CD at T .

Find the coordinates of T.
(c) Given that T is the midpoint of $C D$, find the coordinates of C and B.
4. Triangle $A B C$ has vertices $A(1,2), B(11,2)$ and $C(7,6)$ as shown.
(a) Write down the equation of l_{1}, the perpendicular bisector of $A B$.
(b) Find the equation of l_{2}, the perpendicular bisector of AC.

(c) Find the point of intersection of the lines l_{1} and l_{2}.

Straight Line

5. Triangle $A B C$ has vertices
$\mathrm{A}(-2,12), \mathrm{B}(-3,-5)$ and $C(6,-2)$ as shown.
(a) Find the equation of the median BD.
(b) Find the equation of the altitude AE.
(c) Find the coordinates of the point of intersection of $B D$ and $A E$.

Straight Line

Cross Topic Questions

Straight line and trigonometry

1. (a) The diagram below show a right angled triangle, where the line OA has equation $5 x-3 y=0$.

(i) Show that $\tan a=\frac{5}{3}$.
(ii) Find the value of $\sin a$ and $\cos a$.
(b) A second right angled triangle is added as shown.

The line OB has equation $x-2 y=0$.

Find values of $\sin b$ and $\cos b$.
(c) (i) Find the value of $\sin (a-b)$.
(ii) Find the value of $\cos (a+b)$.

Straight Line

Answers

R1
1.
(a) 2
(b) 1
(c) $\frac{1}{2}$
(d) -2
(e) 3
(f) 2
(g) $\frac{5}{2}$
(h) $\frac{1}{2}$
2.
(a) $3,(0,2)$
(b) $\frac{5}{8},(0,-7)$
(c) $-3,(0,2)$
(d) $-\frac{3}{4},(0,4)$
(e) $1,(0,-3)$
(f) $\frac{1}{2},(0,9)$
3.
(a) $\frac{5}{3},(0,1)$
(b) $-\frac{4}{3},(0,3)$
(c) $2,(0,12)$
(d) $-\frac{2}{5},(0,0)$
(e) $3,\left(0,-\frac{15}{2}\right)$
(f) $\frac{4}{3},\left(0,-\frac{7}{3}\right)$
(g) $-\frac{5}{2},(0,-3)$
(h) $-\frac{1}{2},\left(0, \frac{11}{8}\right)$
4.
(a) $y=-2 x+4$
(b) $y=6 x+7$
(c) $y=4$
(d) $y=-2 x+11$
(e) $x=5$
(f) $y=\frac{1}{2} x+\frac{9}{2}$
(g) $y=2 x-3$

R2
(1) $2 \sqrt{2}$
(2) $\sqrt{149}$
(3) $2 \sqrt{34}$
(4) $\sqrt{85}$
(5) $\sqrt{89}$
(6) $\sqrt{26}$
(7) $7 \sqrt{2}$
(8) $\sqrt{37}$

R3
1.
(a) $(-1,2)$
(b) $(5,6)$
(c) $\left(-\frac{3}{2},-1\right)$
(d) $(-2,5)$
(e) $(0,1)$
(f) $(-4,5)$
(g) $(0,-7)$
(h) $(-2,-3)$
2. $(13,4)$
3. $(-13,-5)$

Straight Line

R4
1.
(a) $-\frac{1}{3}$
(b) $\frac{1}{2}$
(c) $-\frac{1}{6}$
(d) -3
(e) 4
(f) $\quad-5$
(g) $\frac{3}{2}$
(h) $-\frac{4}{5}$
(i) $\frac{5}{3}$
2.
(a) $-\frac{1}{5}$
(b) $-\frac{3}{2}$
(c) $\frac{1}{3}$
(d) 2
(e) $-\frac{1}{3}$
(f) $\quad-1$
(g) $-\frac{1}{4}$
(h) $-\frac{1}{3}$
(i) $-\frac{2}{3}$
(j) 2

R5

1. $(-1,-1)$
2. $(8,4)$
3. $(3,-3)$
4. $\left(\frac{7}{2}, \frac{3}{2}\right)$

Section B

1. $2 x+y=3$
2. $3 x+y=-3$
3. $x-2 y=-2$
4. $x+3 y=13$
5. $\quad m=-0 \cdot 62$ as chute is downhill then $m=0 \cdot 62$ which falls between $0 \cdot 5<m \leq 1 \cdot 2$. chute is categorised as safe.

Section C

01

1. $y=\frac{1}{\sqrt{3}}(x+3)$
2. 30°
3. $123 \cdot 7^{\circ}$

02

1. $y=3 x+8$
2. $4 y=x+17$

3
 (a) 3

(b) PQ is perpendicular to $x+3 y-7=0$ since $m_{1} \times m_{2}=-1$
4.
(a) Proof
(b) $\quad C(25,6)$ and $D(23,0)$

Straight Line

03

1.

(a) $y=3 x-6$
(b) $\quad E(4,6)$
(c)i $y=-2 x+14$
(c)ii Proof
2.
(a) $y=2$
(b) $y=-2 x$
(c) $(-1,2)$
3.
(a) $y=-2 x+15$
(b) $T(1,3)$
(c) $B(-1,-3), C(-3,1)$
4.
(a) $x=6$
(b) $2 y+3 x=20$
(c) $(6,1)$
5.
(a) $y=2 x+1$
(b) $y=-3 x+6$
(c) $(1,3)$

Section D

Cross Topic Questions

1.

(a) i Proof
(a) ii $\sin a=\frac{5}{\sqrt{34}}$ and $\cos a=\frac{3}{\sqrt{34}}$
(b) $\quad \sin a=\frac{1}{\sqrt{5}}$ and $\cos a=\frac{2}{\sqrt{5}}$
(c) $i \frac{7}{\sqrt{170}}$
ii $\frac{1}{\sqrt{170}}$

